Твинскролл — Википедия
Материал из Википедии — свободной энциклопедии
Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 6 марта 2016; проверки требуют 17 правок. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 6 марта 2016; проверки требуют 17 правок. Турбокомпрессор двигателя Mitsubishi в разрезе.Твинскролл (двойная улитка, англ. Twin-scroll) — вариант исполнения турбокомпрессора, имеющий два канала для выхлопных газов.
В погоне за повышением коэффициента полезного действия агрегата турбонаддува, производители автомобилей начали экспериментировать с геометрией крыльчатки турбины, формой хаузинга и принципом действия.
Первыми, кто установил на свои двигатели турбокомпрессор, имеющий турбину типа «twin-scroll» были Porsche, выпустив в 1978 году двигатель тип-930 3.3T.[источник не указан 1917 дней] Затем уже за ними потянулись и остальные производители, такие как BMW, Volvo, Peugeot, Subaru
Ранеры в коллекторе TwinScroll соединены 1,4 и 2,3 при порядке работе цилиндров 1,3,4,2
Турбина типа «twin-scroll» отличается от обычной наличием двух каналов, разделяющих надвое рабочую камеру турбины. Таким образом, отработавшие газы подаются на турбину раздельно, за счет чего эффективнее используется импульсный наддув.
Отработавшие газы, выходя из цилиндра, попадают в выпускной коллектор, и далее в турбину. Разница с «single-scroll» турбиной в том, что в корпусе турбины присутствуют два радиальных канала, раскручивающих рабочее колесо (крыльчатку) турбины. Наличие двухканального корпуса позволяет наиболее полно использовать принцип импульсного наддува, разделив общий поток отработавших газов на две части. Например, в четырехцилиндровом двигателе с порядком работы цилиндров
1-3-4-2, объединены 1, 4 и 3, 2 цилиндры, то есть, один канал турбины питается 1 и 4 цилиндрами, а второй канал — 3 и 2 цилиндрами.
Плюсы и минусы[править | править код]
К минусам данного типа турбин можно отнести то, что они имеют более сложную конструкцию, что приводит к удорожанию производства. В дополнение к этому, турбина типа «twin-scroll» обладает меньшей эффективностью на высоких оборотах двигателя, в отличие от турбины типа «single-scroll», так как влияние импульсного наддува с повышением частоты вращения уменьшается.
Плюсом данной конструкции турбины является высокая эффективность работы на малых и средних частотах вращения двигателя, что позволяет снизить так называемый эффект «турбо ямы». Таким образом, пиковые значения крутящего момента двигателя возможно получить с 1500~1800 об/мин.
описание конструкции, принцип действия, плюсы и минусы
Основным недостатком турбированных двигателей в сравнении с атмосферными вариантами является меньшая отзывчивость, обусловленная тем, что раскрутка турбины занимает определенное время. С развитием турбокомпрессоров производители разрабатывают различные способы повышения их отзывчивости, производительности и эффективности. Наиболее оптимальным вариантом являются твинскрольные турбины.
Общие особенности
Под данным термином понимают турбокомпрессоры со сдвоенной входной частью и двойной крыльчаткой турбинного колеса. Со времен появления первых турбин (примерно 30 лет назад) они были дифференцированы на варианты с открытым и раздельным впуском. Последние являются аналогами современных твинскрольных турбокомпрессоров. Лучшие параметры определяют применение их в тюнинге и автоспорте. К тому же некоторые производители используют их на серийных спортивных машинах, таких как Mitsubishi Evo, Subaru Impreza WRX STI, Pontiac Solstice GXP и др.
Конструкция и принцип функционирования
От обычных турбин твинскрольные отличаются сдвоенным турбинным колесом и разделенной надвое входной частью. Ротор имеет монолитную конструкцию, но размер, форма и изгиб лопастей изменяются по диаметру. Одна его часть рассчитана на малую нагрузку, другая — на большую.
Принцип работы твинскрольных турбин основан на раздельной подаче выхлопных газов под разным углом на турбинное колесо в зависимости от порядка работы цилиндров.
Далее более подробно рассмотрены конструктивные особенности и то, как работает твинскрольная турбина.
Выпускной коллектор
Основное значение для твинскрольных турбокомпрессоров имеет конструкция выпускного коллектора. Она основана на концепции сопряжения цилиндров гоночных коллекторов и определяется количеством цилиндров и порядком их работы. Почти все 4-цилиндровые моторы функционируют в порядке 1-3-4-2. В данном случае один канал объединяет 1 и 4 цилиндры, другой – 2 и 3. На большинстве 6-цилиндровых моторов подача выхлопных газов осуществляется раздельно из 1, 3, 5 и 2, 4, 6 цилиндров. В качестве исключений следует отметить RB26 и 2JZ. Они работают в порядке 1-5-3-6-2-4.
Следовательно, для данных моторов 1, 2, 3 цилиндры сопрягают для одной крыльчатки, 4, 5, 6 – для второй (в стоке в том же порядке организован привод турбин). Таким образом, названные двигатели отличаются упрощенной конструкцией выпускного коллектора, объединяющего в два канала три первых и три последних цилиндра.
Помимо соединения цилиндров в определенном порядке, очень важны и прочие особенности коллектора. Прежде всего, оба канала должны иметь равную длину и одинаковое количество изгибов. Это обусловлено необходимостью обеспечения одинакового давления подаваемых выхлопных газов. Кроме того, важно соответствие фланца турбины на коллекторе по форме и размерам ее входу. Наконец, для обеспечения наилучшей производительности необходимо точное соответствие конструкции коллектора значению A/R турбины.
Необходимость применения для твинскрольных турбин выпускного коллектора соответствующей конструкции определяется тем, что в случае использования обычного коллектора такой турбокомпрессор будет работать как синглскрольный. То же самое будет наблюдаться при совмещении синглскрольной турбины с коллектором для твинскрольной.
Импульсное взаимодействие цилиндров
Одно из значительных достоинств твинскрольных турбокомпрессоров, определяющих их преимущества перед синглскрольными, состоит в существенном сокращении или устранении взаимного влияния цилиндров импульсами отработанных газов.
Известно, что для прохождения каждым цилиндром всех четырех тактов коленчатый вал должен провернуться на 720°. Это справедливо и для 4- и для 12-цилиндровых двигателей. Однако если при повороте коленвала на 720° на первых цилиндры завершат один такт, то на 12-цилиндровых – все такты. Таким образом, с увеличением количества цилиндров сокращается величина вращения коленвала между одинаковыми тактами для каждого цилиндра. Так, на 4-цилиндровых моторах рабочий ход происходит каждые 180° в различных цилиндрах. Это актуально и для тактов впуска, сжатия и выпуска. На 6-цилиндровых двигателях за 2 оборота коленвала происходит больше событий, поэтому одинаковые такты между цилиндрами разнесены на 120°. Для 8-цилиндровых моторов интервал составляет 90°, для 12-цилиндровых – 60°.
Известно, что распредвалы могут иметь фазу от 256 до 312° и более. Для примера можно взять двигатель с фазами 280° на впуске и выпуске. При выпуске отработавших газов на таком 4-цилиндровом моторе каждые 180° выпускные клапаны цилиндра будут открыты на протяжении 100°. Это требуется для подъема поршня из нижней в верхнюю мертвую точку во время выпуска для данного цилиндра. При порядке работы 1-3-2-4 для третьего цилиндра выпускные клапаны начнут открываться при завершении рабочего хода поршня. В это время в первом цилиндре начнется такт впуска, и станут закрываться выпускные клапаны. В течение первых 50° открытия выпускных клапанов третьего цилиндра будут открыты выпускные клапаны первого, а также начнут открываться его впускные клапаны. Таким образом, происходит перекрытие клапанов между цилиндрами.
После удаления выхлопных газов из первого цилиндра закрываются выпускные клапаны, и начинают открываться впускные. В то же время открываются выпускные клапаны третьего цилиндра, освобождая высокоэнергетические выхлопные газы. Значительная доля их давления и энергии используется для привода турбины, а меньшая часть ищет путь наименьшего сопротивления. Ввиду меньшего давления закрывающихся выпускных клапанов первого цилиндра в сравнении с цельным входом турбины часть отработанных газов третьего цилиндра направляется в первый.
Ввиду того, что в первом цилиндре начинается впускной такт, впускной заряд разбавляется выхлопными газами, теряя мощность. В завершение клапаны первого цилиндра закрываются, а поршень третьего поднимается. Для последнего осуществляется выпуск, и повторяется рассмотренная для цилиндра 1 ситуация, когда открываются выпускные клапаны второго цилиндра. Таким образом, наблюдается смешение. Данная проблема еще больше проявляется на 6- и 8-цилиндровых моторах при интервалах такта выпуска между цилиндрами в 120 и 90° соответственно. В данных случаях наблюдается еще более длительное перекрытие выпускных клапанов двух цилиндров.
Ввиду невозможности изменения количества цилиндров данную проблему можно решить, увеличив интервал между аналогичными тактами путем применения турбокомпрессора. В случае использования двух турбин на 6- и 8-цилиндровых моторах можно совместить цилиндры для привода каждой из них. В таком случае интервалы между аналогичными событиями выпускных клапанов удвоятся. Например, для RB26 можно совместить цилиндры 1-3 для передней турбины и 4-6 для задней. Таким образом исключается последовательное срабатывание цилиндров для одной турбины. Следовательно, интервал между событиями выпускных клапанов для цилиндров одного турбокомпрессора возрастает со 120 до 240°.
Ввиду того, что твинскрольная турбина имеет раздельный выпускной коллектор, в данном смысле она аналогична системе с двумя турбокомпрессорами. Так, 4-цилиндровые моторы с двумя турбинами либо твинскрольным турбокомпрессором имеют интервал в 360° между событиями. 8-цилиндровые двигатели с аналогичными системами наддува имеют тот же интервал. Очень длительный период, превышающий продолжительность подъема клапанов, исключает их перекрытие для цилиндров одной турбины.
Таким образом, двигатель втягивает больше воздуха и вытягивает остатки выхлопных газов с малым давлением, заполняя цилиндры более плотным и чистым зарядом, что обеспечивает более интенсивное сгорание, повышающее производительность. К тому же большая объемная эффективность и лучшая очистка позволяют использовать более высокую задержку воспламенения, поддерживающую пиковую температуру в цилиндрах. Благодаря этому эффективность твинскрольных турбин выше на 7-8% в сравнении с синглскрольными при лучшей на 5% эффективности использования топлива.
По данным Full-Race, твинскрольные турбокомпрессоры по сравнению с синглскрольными характеризуются большими средними давлением в цилиндре и эффективностью, но меньшими пиковым давлением в цилиндре и противодавлением на выходе. Твинскрольные системы имеют большее противодавление на низких оборотах (способствующее наддуву) и меньшее на высоких (повышающее производительность). Наконец, двигатель с такой системой наддува менее чувствителен к отрицательным эффектам широкофазных распредвалов.
Производительность
Выше были приведенные теоретические положения функционирования твинскрольных турбин. Что это дает на практике, установлено замерами. Такое испытание путем сравнения с синглскрольным вариантом было проведено журналом DSPORT на Project KA 240SX. Его KA24DET развивает до 700 л. с. на колесах на E85. Мотор оснащен кастомным выпускным коллектором Wisecraft Fabrication и турбокомпрессором Garrett GTX. В процессе испытаний меняли только корпус турбины при одинаковом значении A/R. Помимо изменения мощности и крутящего момента испытатели оценивали отзывчивость путем замеров времени достижения определенных оборотов и давления наддува на третьей передаче при аналогичных условиях запуска.
Результаты продемонстрировали лучшую производительность твинскрольной турбины во всем диапазоне оборотов. Наибольшее превосходство по мощности она показала в интервале от 3500 до 6000 об/мин. Лучшие результаты объясняются большим давлением наддува при тех же оборотах. К тому же большее давление обеспечило прирост крутящего момента, сравнимый с эффектом от повышения объема двигателя. Наиболее ярко он также проявляется на средних оборотах. В ускорении с 45 до 80 м/ч (3100-5600 об/мин) твинскрольная турбина обошла синглскрольную на 0,49 с (2,93 с против 3,42), что даст разницу в три корпуса. То есть когда машина с сигнлскрольным турбокомпрессором достигнет 80 м/ч, твинскрольный вариант будет ехать на 3 длины автомобиля впереди со скоростью 95 м/ч. В диапазоне скоростей 60-100 м/ч (4200-7000 об/мин) превосходство твинскрольной турбины оказалось менее значительным и составило 0,23 с (1,75 против 1,98 с) и 5 м/ч (105 против 100 м/ч). По скорости достижения определенного давления твинскрольный турбокомпрессор опережает синглскрольный примерно на 0,6 с. Так, при 30 psi разница составляет 400 об/мин (5500 против 5100 об/мин).
Еще одно сравнение провели Full Race Motorsports на 2,3 л двигателе Ford EcoBoost с турбиной BorgWarner EFR. В данном случае путем компьютерного моделирования была сопоставлена скорость потока выхлопных газов в каждом канале. Для твинскрольной турбины разброс данной величины составил до 4%, в то время как для синглскрольной – 15%. Лучшая согласованность скоростей потока свидетельствует о меньших потерях при смешивании и большей энергии импульса для твинскрольных турбокомпрессоров.
Достоинства и недостатки
Твинскрольные турбины характеризуются множеством преимуществ перед синглскрольными вариантами. К ним относятся:
- повышенная производительность во всем диапазоне оборотов;
- лучшая отзывчивость;
- меньшие потери при смешивании;
- повышенная энергия импульса на турбинное колесо;
- лучшая эффективность наддува;
- больший крутящий момент на низах аналогично системе твин-турбо;
- сокращение ослабления впускного заряда при перекрытии клапанов между цилиндрами;
- понижение температуры выхлопных газов;
- снижение импульсных потерь двигателя;
- снижение расхода топлива.
Основным недостатком является большая сложность конструкции, обуславливающую повышенную стоимость. Кроме того, при большом давлении на высоких оборотах разделение потока газов не позволит получить ту же пиковую производительность, что на синглскрольной турбине.
Конструктивно твинскрольные турбины представляют аналог систем с двумя турбокомпрессорами (би-турбо и твин-турбо). В сравнении с ними такие турбины наоборот имеют преимущества в стоимости и простоте конструкции. Этим пользуются некоторых производители, как, например, BMW, заменившая систему твин-турбо на N54B30 1-Series M Coupe на твинскрольный турбокомпрессор на N55B30 M2.
Следует отметить, что существуют еще более технически совершенные варианты турбин, представляющие высшую ступень их развития — турбокомпрессоры с изменяемой геометрией. В целом они обладают теми же преимуществами перед обычными турбинами, что и твинскрольные, но в большей степени. Однако такие турбокомпрессоры имеют значительно более сложную конструкцию. К тому же их трудно настроить на не рассчитанных изначально на такие системы моторах ввиду того, что они контролируются блоком управления двигателем. Наконец, основным фактором, обуславливающим крайне скудное применение данных турбин на бензиновых двигателях, является очень высокая стоимость моделей для таких моторов. Поэтому как в серийном производстве, так и в тюнинге они встречаются крайне редко, однако обширно распространены на дизельных двигателях коммерческих машин.
На SEMA 2015 г. BorgWarner была представлена разработка, совмещающая твинскрольную технологию и конструкцию с изменяемой геометрией — твинскрольная турбина с изменяемой геометрией. В ее двойной входной части установлена заслонка, которая в зависимости от нагрузки распределяет поток по крыльчаткам. На низких оборотах все отработанные газу идут на маленькую часть ротора, а большая перекрыта, что обеспечивает еще более быструю раскрутку, чем у обычной твинскрольной турбины. С ростом нагрузки заслонка постепенно переходит в среднее положение и равномерно распределяет поток на высоких оборотах, как в стандартной твинскрольной конструкции. Таким образом, данная технология, как и технология с изменяемой геометрией, обеспечивает изменение соотношения A/R в зависимости от нагрузки, подстраивая турбину под режим работы двигателя, что расширяет рабочий диапазон. При этом рассматривая конструкция значительно проще и дешевле, так как здесь используется только один движущийся элемент, работающий по простому алгоритму, и не требуется применение термостойких материалов. Следует отметить, что подобные решения встречались и ранее (например, quick spool valve), однако эта технология по каким-то причинам не обрела распространения.
Применение
Как было отмечено выше, твинскрольные турбины нередко применяются на серийных спорткарах. Однако при тюнинге их использование на многих моторах с синглскрольными системами затруднено ограниченным пространством. Это обусловлено, прежде всего, конструкцией коллектора: при равной длине необходимо сохранить приемлемые радиальные изгибы и характеристики потока. К тому же стоит вопрос оптимальной длины и изгиба, а также материала и толщины стенок. По данным Full-Race, ввиду большей эффективности твинскрольных турбин возможно использование каналов меньшего диаметра. Однако вследствие их сложной формы и двойного входного отверстия такой коллектор в любом случае больше, тяжелее и сложнее обычного из-за большего количества деталей. Поэтому он может не поместиться на стандартное место, вследствие чего потребуется менять картер. К тому же сами твинскрольные турбины больше аналогичных синглскрольных. Кроме того, потребуются другие аппайп и маслоуловитель. Помимо этого, для лучшей производительности с внешними вестгейтами для твинскрольных систем применяют два вестгейта (по одному на крыльчатку) вместо Y-образной трубы.
В любом случае возможна и установка твинскрольной турбины на ВАЗ, и замена ей синглскрольного турбокомпрессора Porsche. Разница состоит в стоимости и объеме работ по подготовке двигателя: если на серийных турбомоторах при наличии пространства обычно достаточно заменить выпускной коллектор и некоторые прочие детали и сделать настройку, то атмосферные двигатели требуют для турбирования значительно более серьезного вмешательства. Однако во втором случае разница в сложности установки (но не в стоимости) твинскрольной и синглскрольной систем несущественна.
Выводы
Твинскрольные турбины, благодаря раздельной подаче выхлопных газов на двойное турбинное колесо и устранению взаимного импульсного влияния цилиндров, обеспечивают лучшие производительность, отзывчивость и эффективность в сравнении с синглскрольными вариантами. Однако создание такой системы может оказаться весьма дорогостоящим. В целом это оптимальное решение для повышения отзывчивости без потери максимальной производительности для турбомоторов.
Супертурбо: все продвинутые системы наддува
Битурбо, твинтурбо, твинскролл... Наверняка вы давно хотели разложить для себя по полочкам, что как работает и чем отличается. Мы подготовили для вас подробный рассказ о плюсах, минусах и надежности каждой из технологий.
Я предельно упростил формулировки, чтобы текст был доступен для понимания широкому кругу читателей. Но для лучшего понимания вопроса рекомендую прочитать мои прошлые публикации о
Прогресс не стоит на месте, и каждое новое поколение автомобилей должно быть быстрее, экономичнее и мощнее. Часто для повышения мощности используются комбинированные системы наддува, да и «обычные» турбины вовсе не так просты, как кажется на первый взгляд. Каким же образом инженеры научили турбомоторы быть одновременно мощными, эластичными и экономичными? Какие технологии позволяют создавать массовые двигатели с удельной мощностью в 150 л.с. на литр и отличной тягой на низах, и тысячесильных монстров?
«Обычная» турбина
Как я уже писал, турбокомпрессор прост на первый взгляд, но является высокотехнологичным устройством, которое работает в очень жестких условиях. И любое его усложнение сильно сказывается на надежности. Для примера я постараюсь подробнее описать устройство типичного турбокомпрессора без особых усложнений.
Основной частью турбокомпрессора является средний корпус, в нем расположены подшипники скольжения, упорный подшипник и седло уплотнения с кольцами. В самом корпусе есть каналы для прохождения через него масла и охлаждающей жидкости. На совсем старых конструкциях обходились только маслом и для смазки и для охлаждения, но такие турбины не применяются на серийных машинах уже давно. Для предохранения среднего корпуса от воздействия горячих выхлопных газов служит жароотражатель.
В средний корпус устанавливается турбинный вал. Эта деталь не просто вал, конструктивно он соединен с турбинным колесом неразъемным соединением, чаще всего сваркой трением или выполнен из цельного куска металла. Иногда для создания крыльчатки используется керамика-прочности и коррозийной устойчивости лучших конструкционных сталей может не хватать. Сам вал имеет сложную форму, на нем есть утолщение для уплотнения и упорный выступ, а форма цилиндрической части рассчитана с учетом теплового расширения во время работы.
На турбинный вал надевается компрессорное колесо. Оно изготовлено обычно их алюминия и фиксируется на валу гайкой.
Конструкция из среднего корпуса, установленного в него турбинного вала и компрессорного колеса называется картриджем. После сборки этот узел тщательно балансируется, ведь работает он при очень высоких оборотах и малейший дисбаланс быстро выведет его из строя.
Для предохранения от слишком высокого давления наддува используется клапан сброса давления газов, он же вастегейт. Обычно он является частью турбинной улитки и управляется вакуумом. Он закрыт при обычном режиме работы турбины и открывается в случае слишком высокого давления наддува или других проблем в работе мотора, сбрасывая скорость вращения турбины.
А теперь о том, как используют турбины и какие технологии применяют, чтобы достичь самых высоких показателей моторов.
Twin-turbo и Bi-turbo
Чем больше и мощнее мотор, тем больше воздуха нужно подавать в цилиндры. Для этого нужно сделать турбину больше или быстрее. А чем больше размер турбины, тем тяжелее ее крыльчатки и тем инерционнее она получается. При нажатии на педаль газа открывается дроссельная заслонка и больше горючей смеси попадает в цилиндры. Образуется больше выхлопных газов и они раскручивают турбину до более высокой частоты вращения, что, в свою очередь, увеличивает количество подаваемой горючей смеси в цилиндры. Чтобы сократить время раскрутки турбин и сопутствующую им «турбояму», изначально испробовали способы, которые называются твин-турбо и би-турбо.
Это две разные технологии, но маркетологи компаний-производителей внесли немало путаницы. Например, на Maserati Biturbo и Mercedes AMG Biturbo на самом деле используют технологию твин-турбо. Так в чем же разница? Изначально Twin Turbo («турбины-близнецы») называлась технология, при которой выхлопные газы разделялись на два равных потока и распределялись на две одинаковые турбины малого размера. Это позволяло получить лучшее время отклика, а иногда и упростить конструкцию мотора, используя недорогие турбокомпрессоры, что очень актуально для V образных двигателей с выхлопными коллекторами «вниз».
Фото:twin turbo Nissan
Обозначение Biturbo («двойная турбина») же относят к конструкциям, в которых применяются последовательно подключенные ко впуску две турбины-маленькую и большую. Маленькая хорошо работает на малой нагрузке, быстро раскручивается и обеспечивает тягу «на низах», а потом в действие вступает большая турбина, более эффективная на большой нагрузке. Маленькая турбина в этот момент отключается системой дроссельных заслонок.
Преимуществом такой схемы является большая эффективность одной большой турбины на большой нагрузке: она обеспечивает лучшее давление и меньший нагрев воздуха при большом ресурсе. А еще вместо маленького турбокомпрессора можно использовать механический или электронагнетатель. Они нагревают воздух меньше, чем турбокомпрессор, и не инерционны.
Но как же потери мощности, которые нужны для их раскрутки? Потери на их привод при малой нагрузке не так существенны. Но расплатой за улучшение характеристик турбин является усложнение впускной системы, приходится использовать много труб и дроссельные заслонки, переключающие потоки воздуха.
Обе технологии используются до сих пор всеми производителями, но все они значительно удорожают мотор, ведь дорогих турбокомпрессоров становится в два раза больше, а система управления ими — сложнее. Для сильно форсированных моторов альтернативы этим технологиям нет или почти нет. Но иногда можно просто улучшить конструкцию стандартной турбины.
Тонкое управление вастегейтом
Wastegate – это, дословно, «ворота для сброса», то есть перепускной клапан. На первых турбинах вастегейт работает очень просто: когда давление на впуске преодолевало натяжение пружины, он открывался, стравливал газы и давление падало. Позже систему усложнили: теперь его открытием руководила не только разница давлений, но и электроника, учитывающая множество параметров — обогащение смеси, режим движения, температуру, детонацию и умеющую избегать нежелательных режимов работы самой турбины. Но управлялся он точно так же — пневматикой. Когда нужно было сбросить давление, клапан просто открывался.
Получить качественный скачок характеристик позволяла плавная регулировка степени открытия перепускного клапана. В этом случае турбина может чаще работать с максимальной отдачей, даже при малых оборотах, а на средних нагрузках уже вступает в действие регулирование и в опасные режимы турбина не переходит.
К сожалению, такой способ сложнее. Для его реализации потребовалось разместить электропривод регулировки рядом с турбиной, что понизило ее надежность: электронике приходится работать в очень жестких условиях, при высокой температуре и высокой вибрации. Но улучшение характеристик стоит того и почти все современные турбины высокофорсированных небольших моторов имеют такую конструкцию.
Более эффективное турбинное колесо. Twinscroll
В поисках повышения эффективности одиночной турбины конструкторская мысль придумала способ, который позволял увеличить эффективность работы турбины и на малых и на больших нагрузках. Турбинное колесо, на которое воздействуют выхлопные газы, разделили на две части, отсюда и название технологии – twin scroll (“двойная улитка”), одна часть турбины более эффективна на большой нагрузке, а другая — на малой, но раскручивают они одно и то же компрессорное колесо на общем валу. Турбина получается не намного сложнее, но несколько эффективнее.
В сочетании с подводом выхлопных газов к разным частям «улитки» от разных групп цилиндров и точной настройки это позволяет получить неплохую прибавку производительности без ухудшения характеристик в зоне малых оборотов. Конечно, такая турбина не даст максимальной возможной мощности, но зато такой мотор будет тяговитее и на практике удобнее и быстрее.
Более эффективное турбинное колесо – турбины с изменяемой геометрией
В твин-скролл турбине выхлопные газы разделяются на два потока и один всегда работает с меньшей эффективностью, чем возможно. Но есть и другой способ! Можно регулировать направляющий аппарат турбинного колеса, и выхлопные газы будут работать всегда с максимальной эффективностью. Все это требует весьма сложной механической системы, расположенной в самой горячей части турбины-на выхлопной «улитке». И сложного механизма управления.
Геометрию впускного канала турбины изменяют с помощью направляющих лопаток. На малых оборотах, когда давление выхлопных газов малое, лопатки, поворачиваясь, сужают канал. Через узкое отверстие газы проходят с более высокой скоростью, обеспечивая быструю раскрутку турбины. Когда обороты мотора растут, лопатки пропорционально растущему давлению газов расширяют отверстие, и скорость вращения турбины остается стабильной.
Сначала такие устройства стали применять на турбинах для дизельных моторов — у них ниже температура выхлопных газов, а значит и условие работы тонкой механики лучше. Постепенно технология появилась на в турбинах для бензиновых моторов. Усложнилась и система управления. Вместо изначальной пневматики (как и в случае с вастгейтом), управлять направляющими лопатками стал шаговый электромоторчик.
Резкое усложнение турбины сказывается и на ее стоимости и на ее надежности. Но в высокофорсированных дизельных моторах отказаться от такого эффективного способа сложно, а простое умножение числа турбин не позволяет добиться такого же эффекта. А в мире бензиновых моторов эта технология все еще используется не так уж часто.
Улучшение механики турбин
Подшипники качения (с шариками) имеют намного лучшие характеристики, чем подшипники скольжения (с маслом) — это практически аксиома. Они позволяют уменьшить трение, а значит сделать вращение турбины легким, уменьшить массу вала, снизить зависимость от давления масла. Но высокоточные и очень «выносливые» подшипники качения для огромных скоростей вращения и температур массово стали применять сравнительно недавно.
Турбины на керамических (а не металлических) подшипниках качения надежнее и долговечнее, они не боятся потери давления масла и остановок, менее чувствительны к вибрациям и перегреву. Разумеется, они дороже турбин прошлого поколения, и серийные модели машин с ними появились только недавно, но в автоспорте их возможности оценили уже давно. Например турбины IHI VF серии или Garrett GTxxR/RS применяются на тюнинговых машинах уже много лет.
В заключение
Постепенно новые технологии дешевеют и внедряются на все более массовых машинах. Для последнего поколения моторов почти обязательным атрибутом стало электронное регулирование работы турбины. Все чаще применяются twinscroll-варианты. На больших V образных моторах почти всегда используют технологию twin-turbo, но и турбины при этом не простые, а использующие весь необходимый арсенал новых технологий изготовления.
В сочетании с прямым впрыском топлива это позволяет создавать моторы, характеристики которых еще лет десять назад сочли бы фантастическими — при мощности в 400-500 лошадиных сил они довольствуются 95-м бензином, да и его «едят» не сильно больше, чем малолитражки недавнего прошлого. Что же до надежности современных моторов, то об этом я уже рассказывал в другой статье, ведь в технике ничто не дается просто так.
<a href=»http://polldaddy.com/poll/8537901/»>Считаете ли Вы системы Twin и Bi турбонаддува достаточно отлаженной для установки в массовые машины?</a>Читайте также
Разбираемся в плюсах и минусах различных систем турбонаддува
В современном мире можно выделить шесть различных видов турбосистем:
1.Одиночная турбина
2.Твин-турбо
3.Твинскролл
4.Турбина с изменяемой геометрией
5.Изменяемый твинскролл
6.Электрическая турбина
Сегодня мы с вами попробуем разобраться в каждой из них, выделить их достоинства и недостатки.
Одиночная турбина
Одиночная турбина имеет массу вариаций. Измените размер колеса компрессора, и вы получите совершенно другие характеристики. Крупные турбины добавят больше мощность, турбины поменьше, соответственно – поменьше. Кроме того, одиночные турбины могут быть как на шарикоподшипниках, так и на подшипниках скольжения. Первые имеют гораздо меньший коэффициент трения, соответственно турбина быстрее разгоняется, однако, при этом она и стоит подороже.
Достоинства:
— Относительно недорогой метод увеличения эффективности и мощности двигателя
— Самая простая из всех турбосистем
— Позволяет использовать небольшие двигатели, при этом выдавая мощность крупных атмосферников, соответственно позволяет снизить вес автомобиля
Недостатки:
— Низкий диапазон об/мин.
— Работает не так быстро и стабильно, как другие турбосистемы.
Твин-турбо
Как и одиночные турбины, эта система имеет множество различных опций. Например, может быть установлено по одной турбине на каждый блок цилиндров (для V6 или V8). Кроме того, одна из турбин может быть направлена специально на работу при низких оборотах, а затем в дело может подключаться более крупная, для работы на высоких оборотах двигателя. Кстати, у нас уже писали о сравнении Твинтурбо и Битурбо, почитайте.
Достоинства:
— Для параллельных систем твин-турбо на двигателях с компоновкой типа V, достоинства и недостатки совпадают с теми, которыми обладает одиночная турбина
— Использование двух турбин на разных оборотах дает более широкий диапазон крутящего момента.
Недостатки:
— Стоимость и сложность
— Есть более простые и эффективные способы достижения того же эффекта (см. ниже)
Твинскролл
Практически в любом плане, твинскролл является гораздо более удачной альтернативой одиночной турбины. Благодаря наличию двух камер, выхлоп разделен на два потока. Например, на четырехцилиндровом двигателе (порядок зажигания 1-3-4-2), цилиндры 1 и 4 работают с одной камерой турбины, в то время, как цилиндры 3 и 2 работают с отдельной. В чем же выгода? Представим, что цилиндр 1 заканчивает свой цикл и достигает нижней точки, открывается выхлопной клапан. В то же время, цилиндр 2 заканчивает выхлопной цикл, закрывая выхлопной клапан и открывая впускной клапан. При наличии обычной одиночной турбины, давление выхлопа от цилиндра 1 будет препятствовать забору воздуха цилиндра 2, поскольку оба выхлопных клапана открыты. Так вот, если камеры разделить, проблема разрешится.
Достоинства:
— Больше мощности
— Более широкий диапазон оборотов
— Больше возможностей для тюнинга
Недостатки:
— Требует специальной компоновки двигателя и конструкции выхлопа
— Дороже и сложнее стандартной одиночной турбины
Турбина с изменяемой геометрией
Пожалуй, одна из самых интересных турбосистем. На данный момент производят их довольно мало, поскольку они являются значительно дороже и требуют применения нестандартных материалов. Такие системы ценятся благодаря хорошему диапазону крутящего момента и отсутствию провалов тяги на низких оборотах.
Достоинства:
— Широкая, плавная кривая крутящего момента. Эффективность на высоком диапазоне оборотов.
— Требует всего лишь одну турбину, упрощая тем самым всю систему.
Недостатки:
— Обычно используется только на дизельных двигателях с меньшим количеством выхлопных газов
— Для бензиновых движков такая система обойдется в копеечку.
Изменяемый твинскролл
Может быть, это и есть идеальный вариант, который мы искали? Среди всех новинок, участвовавших в выставке SEMA 2015, эта турбина привлекла особо пристальное, всеобщее внимание.
Достоинства:
— Значительно дешевле (в теории), чем предыдущий вариант, и подходит для бензиновых двигателей
— Обеспечивает плавную кривую крутящего момента
— Проще в производстве
Недостатки:
— Цена и сложность в сравнении с одиночной турбиной или твинскроллом
— Это не новая технология, испытанная в прошлом, которой прижиться так и не удалось. Вероятно, на то есть свои причины.
Электрическая турбина
Установка мощной электрической турбины исключает все возможные проблемы. Провалы тяги? Их больше нет. Мало выхлопных газов? Не проблема. Турбина не добавляет крутящего момента на низких оборотах? Теперь добавляет! Возможно, за этим будущее турбированных двигателей, однако, и у этой системы есть свои недостатки.
Достоинства:
— Исключение провала тяги и недостатка выхлопа, компенсируя их электроэнергией
— Лишняя энергия пускается обратно в дело (как в Формуле 1)
— Огромный диапазон оборотов с плавной кривой крутящего момента
Недостатки:
— Стоимость и сложность. Нуждается в охлаждении.
— Вес и комплект также являются проблемой, поскольку для работы необходим дополнительный аккумулятор
— Турбины с изменяемой геометрией и твинскроллы могут выдавать ту же мощность при значительно меньшей цене.
Содержание Интервалы замены технических жидкостейПравила замены технических жидкостейЗамена жидкости в ГУРЗамена тормозной жидкостиЗамена охлаждающей жидкостиЗамена масла в коробке передачКак поменять антифриз — пошаговая инструкцияКак правильно . . .
Содержание LADA 110 — ВикипедияВАЗ-2110 (LADA 110)ПравитьМодификацииПравитьВАЗ-2111 (LADA 111)ПравитьМодификацииПравитьВАЗ 21124 1. 6 литра 16v 89 л.сЛучшие АКПП и двигатели для ВАЗ 2111, характеристики, бензиновые, дизельные . . .