поршень двигателя
Поршень двигателя является одной из самых главных деталей и конечно же от материала и качества поршней зависит успешная эксплуатация мотора и его долгий ресурс. В этой статье, больше рассчитанной на новичков, будет описано всё (ну или почти всё), что связано с поршнем, а именно: назначение поршня, его устройство, материалы и технология изготовления поршней и другие нюансы.
Сразу хочу предупредить уважаемых читателей, что если какой то важный нюанс, связанный с поршнями, или с технологией их изготовления, я уже написал более подробно в другой статье, то разумеется мне нет смысла повторяться в этой статье. Я просто напросто буду ставить соответствующую ссылку, перейдя по которой уважаемый читатель при желании сможет перейти на другую более подробную статью и в ней ознакомиться с нужной информацией о поршнях более подробно.
На первый взгляд многим новичкам может показаться, что поршень довольно простая деталь и придумать уже что то более совершенное в его технологии производства, форме и конструкции невозможно. Но на самом деле всё не так просто и не смотря на внешнюю простоту формы, поршни и технологии их изготовления до сих пор совершенствуются, особенно на самых современных (серийных или спортивных) более высоко-оборотистых форсированных двигателях. Но не будем забегать вперёд и начнём от простого к сложному.
Для начала разберём для чего нужен поршень (поршни) в двигателе, как он устроен, какие формы поршней бывают для разных двигателей и далее уже плавно перейдём к технологиям изготовления.
Для чего нужен поршень двигателя.
Поршень, за счёт кривошипно-шатунного механизма (коленвала и шатуна — см. рисунок чуть ниже), перемещаясь возвратно-поступательно в цилиндре двигателя, например перемещаясь вверх — для засасывания в цилиндр и сжатия в камере сгорания рабочей смеси, а так же за счёт расширения сгораемых газов перемещаясь в цилиндре вниз, совершает работу, преобразуя тепловую энергию сгораемого топлива в энергию движения, которая способствует (через трансмиссию) вращению ведущих колёс транспортного средства.
Поршень двигателя и силы действующие на него: А — сила, прижимающая поршень к стенкам цилиндра; Б — сила, перемещающая поршень вниз; В — сила передаваемая усилие от поршня к шатуну и наоборот, Г — сила давления сгораемых газов, перемещающая поршень вниз.
То есть по сути без поршня в одноцилиндровом двигателе, или без поршней в многоцилиндровом двигателе — невозможно движение транспортного средства, на которое установлен двигатель.
Кроме того, как видно из рисунка, на поршень действуют несколько сил, (также на том же рисунке не показаны противоположные силы, давящие на поршень снизу вверх).
И исходя из того, что на поршень давят и довольно сильно несколько сил, у поршня должны быть некоторые важные свойства, а именно:
- способность поршня двигателя противостоять огромному давлению газов, расширяющихся в камере сгорания.
- способность сжать и противостоять большому давлению сжимаемого топлива (особенно на дизелях).
- способность противостоять прорыву газов между стенками цилиндра и своими стенками.
- способность передавать огромное давление на шатун, через поршневой палец, без поломок.
- способность не изнашиваться долгое время от трения о стенки цилиндра.
- способность не заклиниваться в цилиндре от теплового расширения материала, из которого он изготовлен.
- поршень двигателя должен иметь способность противостоять высокой температуре сгорания топлива.
- иметь большую прочность при небольшой массе, чтобы исключить вибрацию и инерционность.
И это далеко не все требования, предъявляемые к поршням, особенно на современных высоко-оборотистых моторах. О полезных свойствах и требованиях современных поршней мы ещё поговорим, а для начала давайте рассмотрим устройство современного поршня.
Как видно на рисунке, современный поршень можно разделить на несколько частей, каждая из которых имеет важное значение и свои функции. Но ниже будут описаны основные наиболее важные части поршня двигателя и начнём с наиболее важной и ответственной части — с днища поршня.
Донышко (днище) поршня двигателя.
Это самая верхняя и наиболее нагруженная поверхность поршня, которая обращена непосредственно к камере сгорания двигателя. И нагружено донышко любого поршня не только большой давящей силой от расширяющихся с огромной скоростью газов, но и высокой температурой сгорания рабочей смеси.
Кроме того, донышко поршня своим профилем определяет нижнюю поверхность самой камеры сгорания и также определяет такой важный параметр, как степень сжатия. Кстати, зависеть форма донышка поршня может от некоторых параметров, например от расположения в камере сгорания свечей, или форсунок, от расположения и величины открытия клапанов, от диаметра тарелок клапанов — на фото слева хорошо видны выемки для тарелок клапанов в донышке поршня, которые исключают встречу клапанов с донышком.
Так же форма и размеры донышка поршня зависят от объёма и формы камеры сгорания двигателя, или от особенностей подачи в нее топливно-воздушной смеси — например на некоторых старых двухтактных двигателях на донышке поршня делали характерный выступ-гребень, играющий роль отражателя и направляющий поток продуктов горения при продувке. Этот выступ показан на рисунке 2 (выступ на донышке также виден на рисунке выше, где показано устройство поршня). Кстати, на рисунке 2 так же показан рабочий процесс древнего двухтактного двигателя и то, как влияет выступ на донышке поршня на наполнение рабочей смесью и на выпуск отработанных газов (то есть на улучшение продувки).
Двухтактный двигатель мотоцикла — рабочий процесс
Но на некоторых двигателях (например на некоторых дизелях) на донышке поршня в центре наоборот имеется круглая выемка, благодаря которой увеличивается объем камеры сгорания и соответственно уменьшается степень сжатия.
Но, поскольку выемка небольшого диаметра в центре донышка является не желательной для благоприятного наполнения рабочей смесью (появляются нежелательные завихрения), то на многих двигателях на донышках поршней в центре перестали делать выемки.
А для уменьшения объема камеры сгорания приходится делать так называемые вытеснители, то есть изготавливать донышко с определенным объёмом материала, который располагают немного выше основной плоскости донышка поршня.
Ну и ещё один важный показатель — это толщина донышка поршня. Чем она толще, тем прочнее поршень и тем большую тепловую и силовую нагрузку он сможет выдержать довольно долго. А чем тоньше толщина донышка поршня, тем бóльшая вероятность прогара, или физического разрушения донышка.
Но с увеличением толщины донышка поршня, соответственно увеличивается и масса поршня, что для форсированных высоко-оборотистых моторов очень нежелательно. И поэтому конструкторы идут на компромисс, то есть «ловят» золотую середину между прочностью и массой, ну и конечно же постоянно стараются усовершенствовать технологии производства поршней для современных моторов (о технологиях позже).
Жаровой пояс поршня.
Как видно на рисунке выше, где показано устройство поршня двигателя, жаровым поясом считается расстояние от донышка поршня до его самого верхнего компрессионного кольца. Следует учесть, что чем меньше расстояние от донышка поршня до верхнего кольца, то есть чем тоньше жаровой пояс, тем более высокую тепловую напряжённость будут испытывать нижние элементы поршня, и тем быстрее они будут изнашиваться.
Поэтому для высоко напряжённых форсированных двигателей желательно делать жаровой пояс потолще, однако это делают не всегда, так как это тоже может увеличить высоту и массу поршня, что для форсированных и высоко-оборотистых двигателей нежелательно. Тут так же как и с толщиной донышка поршня, важно найти золотую середину.
Уплотняющий участок поршня.
Этот участок начинается от нижней части жарового пояса до того места, где заканчивается канавка самого нижнего поршневого кольца. На уплотняющем участке поршня расположены канавки поршневых колец и вставлены сами кольца (компрессионные и масло-съёмные).
Канавки колец не только удерживают поршневые кольца на месте, но ещё и обеспечивают их подвижность (благодаря определённым зазорам между кольцами и канавками), что позволяет поршневым кольцам свободно сжиматься и разжиматься за счёт своей упругости (что очень важно если цилиндр изношен и имеет форму бочки). Это также способствует прижиму поршневых колец к стенкам цилиндра, что исключает прорыв газов и способствует хорошей компрессии, даже если цилиндр немного изношен.
Как видно на рисунке с устройством поршня, в канавке (канавках), предназначенной для маслосъёмного кольца имеются отверстия для обратного стока моторного масла, которое масло-съёмное кольцо (или кольца) снимает со стенок цилиндра, при движении поршня в цилиндре.
Кроме основной функции (не допустить прорыва газов) уплотняющего участка, у него есть ещё одно важное свойство — это отвод (точнее распределение) части тепла от поршня на цилиндр и весь двигатель. Разумеется для эффективного распределения (отвода) тепла и для предотвращения прорыва газов важно, что бы поршневые кольца довольно плотно прилегали к своим канавкам, но особенно к поверхности стенки цилиндра.
Головка поршня двигателя.
Головка поршня представляет из себя общий участок, который включает в себя уже описанные мной выше донышко поршня и его и уплотняющий участок. Чем больше и мощнее головка поршня, тем выше его прочность, лучше отвод тепла и соответственно больше ресурс, но и масса тоже больше, что как было сказано выше, нежелательно для высоко-оборотистых моторов. А снизить массу, без уменьшения ресурса, можно если увеличить прочность поршня путём усовершенствования технологии изготовления, но об этом я подробнее напишу позже.
Кстати, чуть не забыл сказать, что в некоторых конструкциях современных поршней, изготавливаемых из алюминиевых сплавов, в головке поршня делают нирезистовую вставку, то есть в головку поршня заливают ободок из нирезиста (специального прочного и стойкого к коррозии чугуна).
В этом ободке прорезают канавку для самого верхнего и наиболее нагруженного компрессионного поршневого кольца. И хотя благодаря вставке немного увеличивается масса поршня, зато существенно увеличивается его прочность и износостойкость (к примеру нирезистовую вставку имеют наши отечественные Тутаевские поршни, изготовленные на ТМЗ).
Компрессионная высота поршня.
Компрессионная высота — это расстояние в миллиметрах, которое отсчитывается от донышка поршня до оси поршневого пальца (или наоборот). У разных поршней компрессионная высота разная и разумеется чем больше расстояние от оси пальца до донышка, тем она больше, а чем она больше, тем лучше компрессия и меньшая вероятность прорыва газов, но и больше сила трения и нагрев поршня.
На старых тихоходных и мало-оборотистых моторах компрессионная высота поршня была больше, а на современных более высоко-оборотистых двигателях стала меньше. Здесь тоже важно найти золотую середину, которая зависит от форсировки мотора (чем выше обороты, тем меньше должно быть трение и меньшая компрессионная высота).
Юбка поршня двигателя.
Юбкой называют нижнюю часть поршня (её ещё называют направляющей частью). Юбка включает в себя бобышки поршня с отверстиями, в которые вставляется поршневой палец. Внешняя поверхность юбки поршня является направляющей (опорной) поверхностью поршня и эта поверхность также как и поршневые кольца трётся о стенки цилиндра.
Примерно в средней части юбки поршня имеются приливы, в которых имеются отверстия для поршневого пальца. А так как вес материала поршня у приливов тяжелее, чем в других местах юбки, то деформации от воздействия температуры в плоскости бобышек будут больше, чем в других частях поршня.
Поэтому для снижения температурных воздействий (и напряжений) на поршне с двух сторон с поверхности юбки снимают часть материала, примерно на глубину 0,5-1,5 мм и получаются небольшие углубления. Эти углубления, называемые холодильниками, не только способствуют устранению температурных воздействий и деформаций, но ещё и препятствуют образованию задиров, а так же улучшают смазку поршня при движении его в цилиндре.
Следует так же отметить, что юбка поршня имеет форму конуса (в верху у донышка уже, внизу шире), а в плоскости, перпендикулярной оси поршневого пальца имеет форму овала. Эти отклонения от идеальной цилиндрической формы минимальные, то есть имеют всего несколько соток мм (эти величины разные — чем больше диаметр, тем больше отклонения).
Конус нужен для того, что бы поршень расширялся от нагрева равномерно, ведь в верху температура поршня выше, а значит и тепловое расширение больше. А раз у донышка диаметр поршня чуть меньше, чем внизу, то при расширении от нагрева поршень примет форму, близкую к идеальному цилиндру.
Ну а овал предназначен для компенсации быстрого износа на стенках юбки, которые стираются быстрее там где трение выше, а выше оно в плоскости движения шатуна.
Благодаря юбке поршня (точнее её боковой поверхности) обеспечивается нужное и правильное положение оси поршня к оси цилиндра мотора. С помощью боковой поверхности юбки, к цилиндру двигателя передаются поперечные усилия от действия боковой силы А (см. самый верхний рисунок в тексте, а так же рисунок справа) которая периодически воздействует на поршни и цилиндры, при перекладке поршней во время вращения коленвала (кривошипно-шатунного механизма).
Также благодаря боковой поверхности юбки осуществляется отвод тепла от поршня к цилиндру (так же как и от поршневых колец). Чем больше боковая поверхность юбки, тем лучше идёт отвод тепла, меньше утечка газов, меньше стук поршня при некотором износе втулки верхней головки шатуна (или при неточной обработке втулки — см. рисунок слева), впрочем как и при трёх компрессионных кольцах, а не двух (об этом я подробнее написал вот тут).
Но при слишком длинной юбке поршня больше его масса, больше трения возникает о стенки цилиндров (на современных поршнях для уменьшения трения и износа стали наносить антифрикционное покрытие на юбку), а лишняя масса и трение очень нежелательны в высоко-оборотистых форсированных современных (или спортивных) моторах и поэтому на таких двигателях юбку постепенно стали делать очень короткой (так называемая миниюбка) и постепенно почти от неё избавились — так и появился Т-образный поршень, показанный на фото справа.
Но и у Т-образных поршней есть недостатки, например у них опять же могут быть проблемы с трением о стенки цилиндра, из-за недостаточной смазываемой поверхности очень короткой юбки (причём на малых оборотах).
Более подробно об этих проблемах, а так же в каких случаях Т-образные поршни с мини юбкой нужны в некоторых двигателях, а в каких нет, я написал отдельную подробную статью вот здесь. Там же написано об эволюции формы поршня двигателя — советую почитать. Ну а мы думаю уже разобрались с устройством поршней и плавно переходим к технологиям изготовления поршней, чтобы понять какие поршни, изготовленные разными способами лучше, а какие хуже (менее прочные).
Поршни для двигателей — материалы изготовления.
При выборе материала для изготовления поршней предъявляют строгие требования, а именно:
- материал поршня должен иметь отличные антифрикционные (антизадирные) свойства.
- материал поршня двигателя должен иметь довольно высокую механическую прочность.
- материал поршня должен иметь малую плотность и хорошую теплопроводность.
- материал поршня должен быть стоек к коррозии.
- материал поршня должен иметь малый коэффициент линейного расширения и быть по возможности близок или равен коэффициенту расширения материала стенок цилиндра.
Чугун.
Раньше, на заре двигателестроения, ещё со времён самых первых автомобилей, мотоциклов и самолётов (аэропланов), для материала поршней применяли серый чугун (кстати для поршней компрессоров тоже). Конечно же, как и у любого материала, у чугуна имеются как достоинства, так и недостатки.
Из достоинств следует отметить хорошую износостойкость и достаточную прочность. Но наиболее важное достоинство чугунных поршней, устанавливаемых в двигатели с чугунными блоками (или гильзами) — это такой же коэффициент теплового расширения, как и чугунного цилиндра двигателя. А значит тепловые зазоры можно сделать минимальными, то есть гораздо меньше, чем у алюминиевого поршня, работающего в чугунном цилиндре. Это позволяло существенно увеличить компрессию и ресурс поршневой группы.
Ещё один существенный плюс чугунных поршней — это небольшое (всего 10 %) снижение механической прочности при нагреве поршня. У алюминиевого поршня снижение механической прочности при нагреве ощутимо больше, но об этом ниже.
Но с появлением более оборотистых двигателей, при использовании чугунных поршней, на больших оборотах стал выявляться их главный недостаток — довольно большая масса, по сравнению с алюминиевыми поршнями. И постепенно перешли к изготовлению поршней из алюминиевых сплавов, даже в двигателях с чугунным блоком, или гильзой, хоть и пришлось делать алюминиевые поршни с гораздо бóльшими тепловыми зазорами, чтобы исключить клин алюминиевого поршня в чугунном цилиндре.
Кстати, раньше на поршнях некоторых двигателей делали косой разрез юбки, который обеспечивал пружинящие свойства юбки алюминиевого поршня и исключал его заклинивание в чугунном цилиндре — пример такого поршня можно увидеть на двигателе мотоцикла ИЖ-49).
А с появлением современных цилиндров, или блоков цилиндров, полностью выполненных из алюминия, в которых уже нет чугунных гильз (то есть покрытых никасилем или керонайтом) появилась возможность изготавливать алюминиевые поршни тоже с минимальными тепловыми зазорами, ведь тепловое расширение легкосплавного цилиндра стало практически таким же, как и у легкосплавного поршня.
Алюминиевые сплавы. Практически все современные поршни на серийных двигателях сейчас изготавливают из алюминиевых сплавов (кроме пластиковых поршней на дешёвых китайских компрессорах).
У поршней, выполненных из алюминиевых сплавов тоже имеются как достоинства, так и недостатки. Из основных достоинств следует отметить небольшой вес легкосплавного поршня, что очень важно для современных высокооборотистых двигателей. Вес алюминиевого поршня конечно же зависит от состава сплава и от технологии изготовления поршня, ведь кованный поршень весит значительно меньше, чем выполненный из того же сплава методом литья, но о технологиях я напишу чуть позже.
Ещё одно достоинство легкосплавных поршней, о которой мало кто знает — это довольно высокая теплопроводность, которая примерно в 3-4 раза выше, чем теплопроводность серого чугуна. Но почему достоинство, ведь при высокой теплопроводности и тепловое расширение довольно не малое и придётся и придётся и тепловые зазоры делать больше, если конечно цилиндр чугунный (но с современными алюминиевыми цилиндрами это стало не нужно).
А дело в том, что высокая теплопроводность не позволяет нагреваться донышку поршня более чем 250 °C, а это способствует гораздо лучшему наполнению цилиндров двигателей и конечно же позволяет ещё более повысить степень сжатия в бензиновых моторах и тем самым поднять их мощность.
Кстати, чтобы как то усилить отлитые из лёгкого сплава поршни, в их конструкцию инженеры добавляют различные усиливающие элементы — например делают стенки и донышко поршня толще, а бобышки под поршневой палец отливают более массивными. Ну или делают вставки из того же чугуна, я об этом уже писал выше. И конечно же все эти усиления увеличивают массу поршня, и в итоге получается, что более древний и прочный поршень, изготовленный из чугуна, проигрывает в весе легкосплавному поршню совсем чуть чуть, где то процентов на 10 — 15.
И тут любому напрашивается вопрос, а стоит ли овчинка выделки? Стóит, ведь у алюминиевых сплавов есть ещё одно отличное свойство — они раза в три лучше отводят тепло, чем тот же чугун. И это важное свойство незаменимо в современных высоко-оборотистых (форсированных и горячих) двигателях, у которых довольно высокая степень сжатия.
К тому же современные технологии производства кованных поршней (о них чуть позже) существенно повышают прочность и уменьшают вес деталей и уже не требуется усиление таких поршней различными вставками, или более массивными отливками.
К недостаткам поршней, выполненных из алюминиевых сплавов относятся такие как: довольно большой коэффициент линейного расширения алюминиевых сплавов, у которых оно составляет примерно в два раза больше, чем у поршней выполненных из чугуна.
Ещё одним существенным недостатком алюминиевых поршней является довольно большое снижение механической прочности, при повышении температуры поршня. К примеру: если легкосплавный поршень нагреть до трёхсот градусов, то это приведёт к снижению его прочности аж в два раза (примерно на 55 — 50 процентов). А у чугунного поршня при его нагреве прочность снижается ощутимо меньше — всего на 10 — 15%. Хотя современные поршни, выполненные из алюминиевых сплавов методом поковки, а не с помощью литья, при нагреве теряют прочность гораздо меньше.
На многих современных алюминиевых поршнях снижение механической прочности и слишком большое тепловое расширение устраняется более совершенными технологиями производства, которые заменили традиционное литьё (об этом ниже), а так же специальными компенсационными вставками (например упомянутые мной выше — вставки из нирезиста), которые не только увеличивают прочность, но и значительно уменьшают тепловое расширение стенок юбки поршня.
Поршень двигателя — технологии изготовления.
Ни для кого не секрет, что со временем, чтобы увеличить мощность двигателей, постепенно начали повышать степень сжатия и обороты моторов. А чтобы поднять мощность без особого ущерба для ресурса поршней, постепенно совершенствовались технологии их изготовления. Но начнём всё по порядку — с обычных литых поршней.
Поршни изготовленные методом обычного литья.
Эта технология самая простая и древняя, она применяется с самого начала истории авто и двигателестроения, ещё со времён первых чугунных поршней.
Технология производства поршней для самых современных двигателей обычным литьём уже почти не применяется. Ведь на выходе получается продукт имеющий изъяны (поры и т.д.) значительно снижающие прочность детали. Да и технология обычного литья в форму (кокиль) довольно древняя, она позаимствована ещё у наших древних предков, которые много веков назад отливали бронзовые топоры.
И залитый в кокиль сплав алюминия повторяет форму кокиля (матрицы), а потом деталь ещё нужно обработать термически и на станках, снимая лишний материал, что отнимает не мало времени (даже на станках с ЧПУ).
Литьё под давлением.
У поршня, изготовленного методом простого литья прочность не высока, из-за пористости детали и постепенно многие фирмы от этого способа отошли и начали отливать поршни под давлением, что значительно улучшило прочность, так как пористость почти отсутствует.
Технология литья под давлением, существенно отличается от технологии обычного литья топоров бронзового века и конечно же на выходе получается более аккуратная и прочная деталь, имеющая несколько лучшую структуру. Кстати, литьём алюминиевых сплавов под давлением в форму (ещё эту технологию называют жидкой штамповкой) отливают не только поршни, но и рамы некоторых современных мотоциклов и автомобилей.
Но всё же и эта технология не идеальна и если даже вы возьмёте в руки отлитый под давлением поршень и рассмотрев его, ничего не обнаружите на его поверхности, но это не значит, что и внутри всё идеально. Ведь в процессе литья, даже под давлением, не исключено появления внутренних пустот и каверн (мельчайших пузырьков), уменьшающих прочность детали.
Но всё же литьё поршней под давлением (жидкая штамповка) существенно лучше обычного литья и эта технология до сих пор применяется на многих заводах при изготовлении поршней, рам, деталей ходовой и других деталей автомобилей и мотоциклов. А кому интересно более подробно почитать о том, как делают жидко-штампованные поршни и о их преимуществах, то читаем о них вот здесь.
Кованные поршни автомобиля (мотоцикла).
Кованые поршни для отечественных автомобилей.
Эта наиболее прогрессивная на данный момент технология производства современных легкосплавных поршней, которые имеют множество преимуществ перед литыми и которые устанавливают на самые современные высоко-оборотистые моторы, с высокой степенью сжатия. У кованных поршней, изготовленных авторитетными фирмами, практически нет недостатков.
Но мне нет смысла писать о кованных поршнях подробно в этой статье, так как я написал о них две очень подробные статьи, которые каждый желающий сможет почитать, кликнув на ссылки ниже.
Кованные поршни 1
Кованные поршни 2
Вот вроде бы и всё, если что нибудь вспомню ещё о такой важной детали, как поршень двигателя, то обязательно допишу, успехов всем.
Поршневой палец: описание,виды,применение,установка,фото,видео. | АВТОМАШИНЫ
Поршневой палец – элемент кривошипно-шатунного механизма цилиндрической формы, который представляет собой ось перемещения шатуна в месте его соединения с поршнем и обеспечивает таким образом подвижное шарнирное соединение головки шатуна и поршня.
Содержание статьи
Применение поршневого пальца
Поршневой палец соединяет поршень с шатуном. Соединение двух этих деталей не может быть жестким, так как и низ, и верх шатуна постоянно перемещаются. Цилиндрический палец позволяет верхней части шатуна «шататься» при перемещении поршня по вертикали.
Для монтажа плавающего пальца поршень, шатун и палец кипятят в горячей воде
Почему поршневой палец трудно облегчить?
Первостепенная задача конструкторов современных двигателей – увеличение мощности и, одновременно, снижение веса мотора. Для того, чтобы уменьшить вес всего агрегата, приходится облегчать детали любыми доступными способами.
Облегчить поршневой палец непросто, так как эта деталь постоянно испытывает серьезные нагрузки. Легкие и прочные сплавы, которые можно использовать для производства поршневых пальцев, стоят дорого, и себестоимость изделия существенно увеличивается. В итоге, в большинстве современных двигателей применяются пальцы из легированной стали, такие же, как сто лет назад.
Зачем нужно отверстие в центре поршневого пальца?
Обычно в теле пальца есть сквозное отверстие отверстие в виде двух конусов с вершинами в центре. Благодаря отверстию можно уменьшить вес детали, а конусная форма связана с распределением нагрузки по поверхности детали. Центр пальца нагружен значительно больше, и в этом месте толщина материала играет наиболее существенную роль.
По способу осевой фиксации пальцы делятся на две группы:
1 – фиксированные
2 – плавающие
1 – Поршневой палец
2 – Зазор между пальцем и бобышкой поршня
3 – Шатун
4 – Поршень
5 – Стопорное кольцо пальца
6 – Бронзовая втулка поршневой головки шатуна
7 – Зазор между пальцем и бронзовой втулкой
На современных автомобильных двигателях наибольшее распространение нашли плавающие пальцы.
Фиксированный
Фиксированным называется поршневой палец, который не вращается в одном из соединяемых элементов за счёт установки с тугой посадкой или в верхней головке шатуна или в отверстиях бобышек поршня.
Тугая посадка поршневого пальца в одном из элементов обеспечивает осевую фиксацию пальца.
В старых автомобильных и стационарных двигателях палец в верхней головке шатуна вообще крепился при помощи разрезной втулки и стяжного болта, но в настоящее время в автомобильных двигателях такой способ крепления поршневого пальца не применяется.
Чаще фиксированное соединение обеспечивается в верхней головке шатуна. При этом вращение пальца осуществляется в отверстиях бобышек поршня.
Например, в двигателях автомобилей ВАЗ надёжная фиксация поршневого пальца обеспечивается за счёт установки пальца в верхней (поршневой) головке шатуна с натягом 0,01 ? 0,042 мм. При этом в соединении пальца с бобышками поршня, для обеспечения шарнирного соединения, устанавливается необходимый зазор. Это наиболее дешёвый способ фиксации пальца в массовом производстве. В этом случае во время ремонта двигателя при сборке шатунно-поршневой группы возникает необходимость нагрева шатуна до достаточно высокой температуры. В двигателях с фиксированным поршневым пальцем бронзовая втулка в поршневую головку шатуна не устанавливается.
Плавающий
Плавающим называется палец, установленный с необходимым зазором, и в верхней головке шатуна, и в бобышках поршня.
В этом случае осевая фиксация поршневого пальца осуществляется за счёт стопорных колец, устанавливаемых в специальные проточки в бобышках поршня.
Во время работы плавающий палец вращается и в головке шатуна и в бобышках поршня. При таком соединении необходимо обеспечить рекомендованный зазор как между пальцем и бобышками поршня, так и между пальцем и втулкой поршневой головки шатуна. В двигателе с плавающим поршневым пальцем для уменьшения трения в поршневую головку шатуна устанавливается бронзовая втулка. Из-за различного температурного коэффициента расширения материалов, из которых изготовлены шатун, поршневой палец и поршень эти зазоры различны.
При комнатной температуре во втулку верхней головки шатуна палец должен входить плотно без люфта и качания. А в бобышки поршня, в холодном состоянии, поршень должен входить с небольшим натягом.
Поэтому перед снятием или установкой плавающего пальца поршень необходимо нагреть в воде до температуры 60? ? 85? С.
Подбор поршневого пальца
Если в двигателе применен плавающий палец, его подбирают по цветовой метке, нанесенной внутри днища поршня, или по заводскому номеру запчасти по каталогу. Поршни и поршневые пальцы делятся на размерные группы в зависимости от диаметра, об этом следует помнить при самостоятельной покупке деталей.
При подборе фиксированного пальца палец подбирается по отверстию в поршне по номеру группы, указанному на днище поршня.
Материал для изготовления поршневых пальцев
Для изготовления поршневых пальцев применяют в основном сталь 45ХА. После отливки деталь закаливают на 1-1.5 мм глубины. Твердость поверхности должна быть соответствовать определенным нормам. В моторах повышенной мощности применяют для изготовления пальцев применяют более прочные сорта легированной стали.
Установка поршневого пальца
Установка фиксированного поршневого пальца
Для установки фиксированного пальца шатун необходимо нагреть в муфельной электрической печи до температуры 240? С. (При отсутствии муфельной печи шатун часто нагревают на простой электрической плитке). Шатун быстро охлаждается, а палец необходимо в осевом направлении устанавливать очень точно, поэтому делайте это только с применением специального приспособления. Необходимо помнить, что для каждого диаметра поршня существует своё приспособление, хотя все они похожи друг на друга, некоторые размеры приспособлений отличаются, но на глаз это не видно.
Установите палец на приспособление. Принимая все меры предосторожности, извлеките нагретый шатун из муфельной печи шатун и быстро закрепите его в тисках. При помощи специального приспособления вставьте палец в поршень и шатун, строго выполняя указания Руководства по ремонту. Делать всё необходимо быстро, поскольку шатун очень быстро остывает. А после того как шатун остынет, изменить положение пальца не получится.
- Рукоятка приспособления
- Центрирующий фланец пальца
- Устанавливаемый палец
- Направляющая втулка
- Колпачковая гайка
Специальное приспособление для установки поршневого пальца автомобиля ВАЗ.
Установка плавающего поршневого пальца
Для обеспечения необходимого зазора (натяга) в соединении с пальцем, поршни в зависимости от диаметра отверстия под поршневой палец и пальцы в зависимости от наружного диаметра обычно делятся на несколько размерных групп (классов). Группа поршня и пальца обычно отмечаются цветной меткой на внутренней стороне днища или на бобышке поршня. На поршневом пальце цветовая метка обычно наносится на торцевую поверхность.
Если поршневой палец устанавливается в отверстие поршня с натягом. Сначала проверяется зазор в соединении поршневого пальца и шатуна. При комнатной температуре (20? С) смазанный моторным маслом палец должен входить во втулку верхней головки шатуны под усилием большого пальца.
Проверив цветовые метки на поршне и пальце, нагреваем поршень в ванне с горячей водой, в которой поддерживается температура 60? ? 85? С. Смазанный моторным маслом палец должен легко входить в отверстие поршня. После остывания палец должен быть неподвижным или вращаться с усилием в бобышке поршня, но легко вращаться во втулке верхней головки шатуна.
Некоторые производители рекомендуют снимать и устанавливать поршневой палец при помощи специального приспособления.
Иногда поршневой палец устанавливается с установленным зазором и во втулку верхней головки шатуна и в отверстия бобышек поршня. В этом случае нагревать поршень нет необходимости, и палец легко вращается при комнатной температуре и в верхней головке шатуна и в бобышках поршня.
Всегда применяйте только новые стопорные кольца поршневого пальца и устанавливайте стопорные кольца в строгом соответствии с руководством по ремонту. Направление зазоров стопорных колец, чаще всего, должны быть направлены в сторону нижней части поршня.
Ремонтный комплект, состоящий из поршня, подобранного к поршню поршневого пальца и плоских стопорных колец.
Ремонтный комплект, состоящий из поршней, поршневых пальцев, поршневых колец и круглых стопорных колец.
Плоские стопорные кольца поршневого пальца
Плавающий поршневой палец с комплектом круглых стопорных колец
В любом случае перед установкой поршневого пальца внимательно ознакомьтесь с руководством по ремонту ремонтируемого автомобиля.
Смазка поршневого пальца
Работающий под большой механической и термической нагрузкой поршневой палец должен получать необходимую смазку. Плавающий поршневой палец в соединении с поршневой головкой шатуна смазывается через отверстие в головке шатуна и бронзовой втулке. Масло в это отверстие поступает из внутренней полости поршня, куда оно вбрызгивается масляной форсункой или поступает через отверстия в поршне от маслосъёмных колец.
Смазка шарнирного соединения поршневого пальца с поршнем. Масло поступает по специальным масляным каналам от маслосъёмных поршневых колец.
Как снять поршень
функции, виды, способы защиты от износа
Одним из требований, предъявляемых к гидроцилиндрам, является устойчивость их деталей к коррозии и износу. Чтобы обеспечить долговременную работоспособность цилиндра и поршня, используются высокопрочные конструкционные материалы и специальные защитные покрытия.
Наиболее распространенными механизмами управления различного оборудования являются гидравлические системы. Источником привода в них выступают гидроцилиндры – поршневые, плунжерные, телескопические и другие. Преобразовывая энергию давления в механическую энергию, они приводят в движение нужные части машин.
Гидроцилиндры каждого типа имеют свои конструктивные особенности. Самые распространенные – поршневые: простые, удобные и эффективные, они используются в самых разных сферах эксплуатации. Свое название эти устройства получили по основному действующему компоненту – гидравлическому поршню.
Принцип работы гидравлического поршня
Поршень является основным рабочим звеном гидроцилиндра. Под воздействием рабочей среды, которая поступает в его полость, поршень движется возвратно-поступательно. Скорость его перемещения зависит от интенсивности нагнетания жидкости. В результате достигается основная цель работы гидроцилиндра – преобразование и передача энергии.
Усилие поршня передает шток, соединенный с ним посредством пальца. Ход поршня ограничивают крышки цилиндра. Жесткий контакт этой пары предотвращают специальные тормозные устройства – демпферы.
В рабочей камере поршень и шток образуют две полости – поршневую и штоковую. Первая ограничена стенками корпуса и поршня, вторая – поверхностями корпуса, поршня и штока.
Чтобы рабочая жидкость не вытекала из корпуса цилиндра, эти полости должны быть герметичными, поэтому поршень оснащают специальными уплотнениями – манжетами из маслостойкой резины.
Требования к поршням и другим деталям гидроцилиндров
Поршень, шток и корпус гильзы в процессе работы испытывают большие нагрузки, поэтому изготавливаются из высокопрочных металлов.
Поршни, контактирующие с внутренними стенками гильзы всей поверхностью, выполняются из материалов с высокими антифрикционными свойствами – латуни, фторопласта или бронзы. Поршни со специальными направляющими и уплотняющими кольцами – из стали.
Поршневые гидроцилиндры должны отличаться:
- Плавностью и равномерностью передвижения поршня по всей длине хода
- Малыми боковыми нагрузками на штоки – во избежание быстрого изнашивания уплотнений, поршней и рабочей поверхности цилиндра
- Отсутствием наружных утечек рабочей жидкости через неподвижные уплотнения (на подвижных поверхностях наличие масляной пленки без каплеобразования допускается)
- Минимальным внутренним перетеканием жидкости из одной полости цилиндра в другую (существует определенная техническая норма)
- Наличием грязесъемников, предотвращающих попадание грязи и пыли в полости цилиндров
- Устойчивостью рабочих поверхностей цилиндро-поршневой группы к коррозии и износу (лучше, если они будут иметь защитные покрытия)
Последнее требование особенно актуально для производителей гидравлического оборудования.
Проблема усиленного износа цилиндров и поршней наиболее эффективно решается с помощью антифрикционных твердосмазочных покрытий. В России они выпускаются под брендом MODENGY.
Покрытия облегчают скольжение контактирующих поверхностей и предотвращают фрикционный износ. Они одновременно выполняют смазочные и защитные функции.
Для обработки гидравлических поршней, штоков и гильз цилиндров используется антифрикционное твердосмазочное покрытие MODENGY 1006.
В состав данного покрытия входят сразу два вида твердых смазок – дисульфид молибдена и поляризованный графит – поэтому оно обладает очень высокой несущей способностью и износостойкостью. MODENGY 1006 может применяться даже в экстремальных условиях эксплуатации поршневых цилиндров.
Материал наносится на штоки, стенки гильз и соприкасающиеся с ними поверхности поршней. Cмазочно-защитная пленка предупреждает возникновение задиров, скачкообразное движение сопряженных элементов и их коррозионный износ.
Под резиновые уплотнения поршней рекомендуется наносить другое покрытие, совместимое с эластомерами – MODENGY 1010.
Перед использованием покрытий металлические поверхности обязательно подготавливаются с помощью Очистителя металла MODENGY и Специального очистителя-активатора MODENGY. Первый эффективно удаляет любые виды загрязнений и обезжиривает детали, второй обеспечивает хорошую адгезию покрытий.
Виды поршневых гидроцилиндров
В зависимости от конструктивных особенностей и принципа работы (движения жидкости) существуют поршневые гидроцилиндры:
- Одностороннего и двустороннего действия
- С односторонним и двусторонним штоком
- С подвижным штоком и подвижным корпусом
В гидроцилиндрах одностороннего действия выдвижение штока осуществляется за счет создания давления рабочей жидкости в поршневой полости, в исходное положение он возвращается от усилия пружины.
В цилиндрах двустороннего действия усилие на штоке создается и при прямом, и при обратном движении поршня – за счет давления рабочей жидкости в поршневой и штоковой полостях.
При прямом ходе поршня на шток передается больше усилия, а скорость его движения меньше, чем при обратном ходе – из-за разницы в площадях, к которым приложена сила давления рабочей жидкости.
Если существует необходимость в создании одинаковых усилий или одинаковых скоростей перемещения выходных звеньев, используются гидроцилиндры с двухсторонним штоком. В них один поршень связан с двумя штоками. В современной технике применяются две разновидности таких конструкций: с закрепленным цилиндром и с закрепленным штоком.
Существуют также телескопические гидроцилиндры одностороннего и двустороннего действия. Они состоят из нескольких цилиндров, один из которых размещен в полости другого. При сравнительно малых размерах телескопические конструкции имеют большой ход штока, поэтому очень эффективны.
Основные параметры устройств
Все поршневые гидроцилиндры имеют свои геометрические, гидравлические и номинальные параметры.
К геометрическим относятся диаметр поршня (гильзы) и штока, а также ход поршня. Все значения устанавливает ГОСТ 6540-68.
Наиболее распространенные диаметры поршня – 10, 12, 16, 20, 25, 32, 40, 50, 63, 80, 100, 125, 160, 200, 250, 320, 400, 500, 620, 800 мм; диаметры штока, помимо тех же размеров, включают 4, 5, 6 и 8 мм.
Ход поршня, т.е. величина его максимально возможного перемещения со штоком, в нормализованных цилиндрах не превышает 10 мм.
К гидравлическим параметрам цилиндра относятся его номинальное рабочее давление и расход жидкости.
Номинальным называют такое давление, при котором гидроцилиндр работает в нужном режиме и сохраняет заявленные производителем свойства. Величина давления определяется нагрузками в цилиндре и может быть ограничена настройками клапанов – предохранительного или редукционного.
Усилие гидроцилиндра и скорость перемещения штока – номинальные параметры гидравлического устройства.
Усилие, развиваемое гидроцилиндром, пропорционально давлению и эффективной площади, на которую воздействует жидкость. Скорость перемещения штока определяется величиной расхода жидкости, поступающей в гидроцилиндр, и его эффективным диаметром.
общая теория и поршни СТК
20.09.2020 Поршневая группа СТКПоршневая группа двигателя включает в себя: поршень, поршневые кольца и поршневой палец.
Поршень, является наиболее важным элементом любого двигателя внутреннего сгорания.
Именно на эту деталь, выпадает основная нагрузка по преобразованию энергии расширяющихся газов в энергию вращения коленчатого вала. Свойства, которыми должен обладать поршень, трудно совместимы и технически тяжело реализуются.
Требования, которым должна соответствовать эта деталь:
- температура в камере сгорания может достигать более 2000°С а температура поршня, без риска потери прочности материала, не должна превышать 350°С.
- после сгорания бензино-воздушной смеси, давление в камере сгорания может достигать 80 атмосфер. При таком давлении, оказываемое на днище усилие, будет составлять свыше 4-х тонн. Толщина стенок и днища поршня должна обеспечивать возможность выдерживать значительные нагрузки. Но любое увеличение массы изделия приводит к увеличению динамических нагрузок на элементы двигателя, что в свою очередь, ведет к усилению конструкции и росту массы двигателя.
- зазор между поршнем и поверхностью цилиндра должен обеспечивать эффективную смазку и возможность перемещения с минимальными потерями на трение. Но в тоже время зазор должен учитывать тепловое расширение и исключить возможность заклинивания.
- изготовление должно быть достаточно дешевым и отвечать условиям массового производства.
Очертания поршня за более сто пятидесятилетнюю историю двигателя внутреннего сгорания мало изменились.
Устройство поршня
Устройство поршня на примере СТК 21126В конструкции поршня можно выделить несколько зон, каждая из которых, имеет свое функциональное назначение.
Поршни ВАЗ 21213 и ВАЗ 21230 отличаются нанесенной маркировкой. Маркировка наносится на поверхность рядом с отверстием под поршневой палец. На поршне ВАЗ 21213 нанесены цифры -«213», на модели ВАЗ 2123 — «23».
На модели ВАЗ 21080, ВАЗ 21083, ВАЗ 21100 нанесена соответствующая маркировка — «08»,»083″, «10». Поршень 2108 имеет диаметр 76 мм , модели 21083 и 2110 — 82 мм.
Поршни ВАЗ 2112 и ВАЗ 21124, имеют соответствующую маркировку — «12»и «24» и отличаются глубиной выборки под клапана. Модели 21126 и 11194 отличаются диаметром.
Если углубления на днище увеличивают объем камеры сгорания, то для уменьшения объема применяют вытеснители. Вытеснителем называют объем металла, который находится выше плоскости днища.
«Жаровым поясом» (огневым) называют расстояние от днища до канавки первого поршневого кольца. Чем ближе располагаются поршневые кольца к днищу, тем более высокой тепловой нагрузке они подвергаются, тем больше сокращается их ресурс.
Уплотняющий участок — это участок канавок, расположенных на боковой цилиндрической поверхности поршня. Канавки предназначены для установки поршневых колец. Поршневые кольца обеспечивают подвижное уплотнение. На всех моделях для двигателей ВАЗ, выполнены две канавки под компрессионные кольца и одна канавка под маслосъемное кольцо.
В канавке под маслосъемное кольцо есть отверстия, через которые отводится излишек масла во внутреннюю полость поршня. Уплотняющий участок выполняет еще одну очень важную функцию — через установленные поршневые кольца, осуществляется отвод значительной части тепла от поршня к цилиндру.
Если конструкция изделия не будет предусматривать эффективный отвод тепла от днища, то это приведёт к его прогоранию.
По расчетам, через компрессионные кольца, передается до 60-70% выделенного тепла. Однако это требует плотного прилегания поршневых колец к цилиндру и к поверхностям канавок.
Для обеспечения работоспособности, торцевой зазор первого компрессионного кольца в канавке должен составлять 0,045-0,070 мм. Для второго компрессионного кольца зазор — 0,035-0,060 мм, для маслосъемного – 0,025-0,050 мм. Между внутренней поверхностью кольца и канавки должен быть радиальный зазор — 0,2-0,3 мм.
Головку поршня образуют днище и уплотняющая часть.
Расстояние от оси поршневого пальца до днища, называют компрессионной высотой поршня.
«Юбкой», называют нижнюю часть поршня. На этом участке находятся бобышки с отверстиями – место, куда устанавливается поршневой палец. Внешняя поверхность юбки, исполняет роль опорной и направляющей поверхности.
Юбка обеспечивает соосность положения детали к оси цилиндра блока. Кроме того, боковая поверхность юбки участвует в передаче к цилиндру возникающих поперечных усилий.
На поверхность юбки (или на все изделие) могут наноситься защитные покрытия улучающие прирабатываемость и снижающих трение.
Покрытие слоем олова позволяет сгладить неточности профиля и предотвратить наволакивание алюминия на поверхности цилиндра. Могут применяться покрытия созданные на основе графита и дисульфида молибдена.
Другой способ, снижающий потери на трение – нанесение на юбке канавок специального профиля. Глубина канавок составляет 0,01-0,015 мм. При движении, канавки не только удерживают масло, но и создают гидродинамическую силу, которая препятствует контакту со стенками цилиндра.
Одним из факторов, определяющих геометрию поршня, является необходимость снижения сил трения.
Для этого требуется обеспечение определенной толщины масляного слоя в зазоре между поршнем и стенками цилиндра. Причем маленький зазор повлечет за собой увеличение сил трения и как следствие повышение нагрева деталей и их ускоренный износ а возможно и заклинивание.
Слишком большой зазор, увеличит шумность двигателя, приведет к росту динамических нагрузок на сопрягаемые детали и будет способствовать их ускоренному износу. Поэтому величина зазора подбирается в соответствии с рекомендациями для конкретного типа двигателя.
В истории применения конструкций поршней для двигателей ВАЗ, просматриваются этапы влияния нескольких европейских конструкторских школ.
На первых моделях двигателей ВАЗ применяется «итальянская» конструкция. Поршни отличаются большой компрессионной высотой, широкой опорной поверхностью юбки. Поверхность изделия покрыта слоем олова.
В разработке последующих конструкций принимают участие немецкие компании. У поршней уменьшается компрессионная высота. На юбке применяется микропрофиль – специальный профиль канавок, для удержания смазки в зоне трения. Поршни моделей ВАЗ 21126 и ВАЗ 11194 получают Т-образный профиль и рассчитаны на установку «тонких» поршневых колец. Так внешне сравнивая модели от 2101 до 21126, можно получить представление об общих тенденциях совершенствования конструкции, основанных на новых научных разработках.
Когда речь заходит об отечественных машинах (ВАЗ, Приора и пр.) приходиться всерьёз рассматривать компанию СТК и её продукцию. Самара Трейдинг Компани (сокращённо – «СТК») не случайно стала одним из самых популярных производителей поршневых групп. Всё дело исключительно в производстве, ведь оно уникально в своём роде.
Самым сложным и, в то же время, важным технологическим процессом при изготовлении поршневых систем является литьё. Однородность и прочность материалов, жаростойкость и твёрдость – всё это играет важнейшую роль. Стоит какому-то коэффициенту отклонится на 1% и поршень застрянет в цилиндре, шатун может легко искривиться и даже заклинить, нарушив целостность и исправность всего силового агрегата.
Полуавтоматические устройства и специальные высокотехнологические станки позволяют компании СТК осуществлять литьё поршней на высочайшем уровне. Данной технологии нет равных, на протяжении долгих десятилетий и благодаря кропотливой работе инженеров фабрика создаёт самые качественные поршневые кольца и поршни. Несмотря на автоматизацию всех процессов, процедура изготовления каждого поршня контролируется людьми. Каждый продукт проходит целую линейку тестов.
Стоит лишь посетить любую станцию техобслуживания и задать вопрос автомеханику «Какой поршень идеально подойдёт отечественному автомобилю?», и вы услышите ответ: «СТК». Всё дело в том, что каждый механик желает выполнить работу так, чтобы клиент не возвращался к нему и не приходилось нарушать гарантийные обязательства.
Несмотря на лидирование компании СТК существуют и другие неплохие аналоги, например, Кострома-мотордеталь. В сравнении с китайскими и европейскими поршнями, Кострома хорошо показала себя в отечественных машинах, однако сама конструкция этого поршня не способна уберечь водителя от самой зловещей неисправности – столкновения поршня и клапанов.
Безвытковые Поршни СТК, содержащие специальные проточки, не влияют пагубно на клапана головки блока цилиндров. Поэтому в случае гидравлического удара, даже при срыве цепи газораспределительного механизма, когда поршни «летят» вверх, а клапана – вниз, исход их столкновения невозможен, если в двигатель установлены поршни СТК. Всё благодаря специальным канавкам, проточенным в головке каждого поршня – новшеству инженеров самарской компании.
Если ваш автомобиль уже давно б/у, его компрессия вас вовсе не радует и вы отлично понимаете, что настало время менять поршневую, помните: оптимальными для двигателя будут поршневые группы Самара Трейдинг Компани (СТК).
Более подробно про поршни СТК можно прочесть здесь и здесь.
GDI:особенности построения поршня
Если мы посмотрим на поршень двигателя системы GDI, то увидим, что он достаточно оригинальной формы: в поршне есть так называемая «выемка» :
Этим он кардинально отличается от поршня «обычного» двигателя.
Давайте попробуем разобраться, для чего нужна такая «выемка» и какую роль она играет или может играть.
Какой принцип работы работы «обычного и массового» двигателя ?
Топливо впрыскивается во впускной коллектор и там, непосредственно перед клапанами начинает перемешиваться с поступившим через дроссельную заслонку свежим воздухом и после открытия соответствующего клапана смесь воздуха и топлива поступает в цилиндр.
Состав смеси, в конечном итоге, получается гомогенным и стехиометрическим.
Двигатель системы GDI работает (может работать) совсем по-другому, он имеет несколько режимов работы и составы смеси при этом могут быть совершенно разными, «лямбда» может быть равна еденице, больше ее или меньше.
Здесь мы должны коснуться такого понятия, как «Коэффициент избытка воздуха».
«Коэффициент избытка воздуха» в английской технической литературе обозначается буквой l — «лямбда», в отечественной буквой «a» — «альфа», но так как «родителями» массового производства систем электронного впрыска топлива считаются и есть зарубежные производители, то не только для удобства, но и правильнее будет говорить и обозначать коэффициент избытка воздуха буквой l (лямбда) — см. Примечание1
Теоретическим и экспериментальным путем было выяснено, что для полного сгорания рабочей смеси требуется определенное и точное соотношение компонентов этой смеси – воздуха и топлива.
Они должны находиться между собой в стехиометрическом соотношении, когда для полного и качественного сгорания 1 кг топлива требуется 14.7 кг воздуха.
Коэффициент избытка воздуха – l (лямбда) показывает, насколько реально имеющееся количество воздуха в камере сгорания отличается от теоретически необходимого, то есть:
Реально имеющаяся в камере сгорания масса воздуха
l = ——————————————————————————————-
Теоретически необходимая масса воздуха
Когда состав топливо — воздушной смеси (в дальнейшем ТВС), находится в стехиометрической пропорции, тогда:
l = 1
(лямбда равняется еденице)
При нарушении пропорций стехиометрического состава ТВС коэффициент l также меняется:
Богатая смесь: «много топлива, мало воздуха» – l< 1
Бедная смесь: «мало топлива, много воздуха» – l >1
Двигатель системы GDI ( в дальнейшем: «Двигатель GDI»), вследствии своих конструктивных особенностей и применения новых технологий может работать на ТВС при таких соотношениях:
l <1
l >1
l = 1
Двигатель системы GDI при своей работе может использовать три вида впрыска топлива:
Ultra Lean Combustion Mode – впрыск топлива на такте сжатия
Superior Output Mode – врыск топлива на такте впуска
Two- stage nixing – впрыск топлива на такте впуска и такте сжатия — см. Примечание 2
Все эти три вида впрыска топлива придуманы и используются для того, что бы:
— уменьшить выбросы вредных веществ сгорания в атмосферу
— повысить мощность двигателя
— добиться экономии топлива
Для полного понимания процесса под названием «работа камеры сгорания по смешиванию топливо-воздушной смеси», надо вспомнить работы О.Рейнольдса, который всю свою жизнь посвятил изучению понятия , которое до сих пор не имеет своего точного определения и конкретного исчисления и называется «турбулентность» — см. Примечание 3
Когда жидкость или газ движутся в каком-то объеме с относительно небольшой скоростью, то это перемещение происходит послойно, один слой «плывет» около другого и слои не смешиваются.
Такое перемещение называется ламинарным.
Но в двигателе внутреннего сгорания, внутри камеры сгорания скорость движения газо-воздушного потока весьма большая и перемешивание топливо-воздушной смеси происходит за счет явления, которое называетсятурбулентность.
Турбулентность в камере сгорания — это такое пограничное состояние топливо-воздушной смеси, когда в зависимости от:
— давления в камере сгорания
— температуры в камере сгорания
— скорости и направления движения впускаемых воздуха и топлива
— плотности воздуха и топлива
,- происходит хаотическое и мгновенное изменение (колебание) неких средних первоначальных значений топливо-воздушной смеси за счет мгновенных возникновений, взаимодействий между собой и исчезновений неопределенно-множественного
«n» числа вихревых движений.
Все это можно определить коротким словом: «хаос».
Изучением этого понятия – «турбулентность», занимался ученый О.Рейнольдс, который установил, что переход от ламинарного движения к турбулентному происходит в том случае, когда некое безразмерное соотношение скорости жидкости ( читай: «топливо-воздушная смесь»), ее вязкости, температуры и давления внутри или около того места, где происходит это движение, достигает одного и того же значения, что можно выразить относительной формулой:
Re = uL/n
, где
u — характерная скорость движения жидкости,
L — характерные размеры течения, а
n — кинематическая вязкость жидкости.
Число Re называется «числом Рейнольдса» и его численное значение определяет характер движения жидкости или газа.
Небольшое число Re будет означать, что движение ламинарное.
Большое число Re будет означать турбулентное движение.
Когда число Re находится в пределах от 1 до 15, то движение еще ламинарное.
Если больше 20 и растет, то начинается переход от ламинарного к турбулентному.
Когда мы визуально можем определить, что движение уже хаотично и невозможно проследить движение струй, то тогда число Re приближается к 1.000.
Итак, из своих теоретических рассуждений мы узнали, что перемешивание топливо-воздушной смеси в камере сгорания происходит за счет турбулентности.
В камере сгорания, за счет повышенного давления, температуры и других факторов число Re будет составлять несколько тысяч.
То есть, это не что иное, как «развитая турбулентность».
Но ранее мы говорили, что «турбулентность – это Хаос».
Если ничего не менять в камере сгорания, не изменять условий впрыска топлива, не изменять «геометрию» камеры сгорания, то мы получим все тот же «обычный» двигатель внутреннего сгорания и никогда не сможем добиться того, что бы l (лямбда) была меньше или больше еденицы и при этом двигатель работал не только «нормально», но еще мог «выдавать» хороший крутящий момент и экономить топливо.
После многолетних исследований и математического моделирования, инженеры фирмы Mitsubishi пришли к выводу, что для выполнения заявленных требований по экономичности, повышения мощностной отдачи, сохранения и улучшения норм экологической безопасности им нужно:
— изменить форму камеры сгорания
— повысить давление впрыска
— повысить давление в камере сгорания
— изменить направление входящих потоков воздуха в камеру сгорания
— изменить направление движения впрыскиваемого топлива
Что и было сделано.
Но самой основной и трудной была задача под названием «Упорядочить Хаос».
Вспомним что такое «турбулентность».
«Хаотическое движение…».
С одной стороны именно турбулентность нужна в камере сгорания для того, что бы максимально «перемешать» топливо-воздушную смесь, то есть – «гомогенезировать» ее.
Тогда и «поджигание» ее и сгорание будут намного стабильнее и эффективнее.
Но с другой стороны, нельзя было «отпускать» турбулентность, надо было «приручить» ее, выполнить на первый взгляд невыполнимое:
«заставить турубулентность играть по предложенным правилам».
Это удалось инженерам фирмы Mitsubishi.
***
Рассмотрим работу двигателя в режиме
Ultra – Lean Combustion Mode
Это режим работы двигателя на сверх-обедненной ТВС.
В этом случае «лямбда» больше еденицы («мало топлива, много воздуха»).
Этот режим используется при движении автомобиля с постоянной скоростью и неизменностью нагрузки. Но надо обязательно отметить, что «этот режим применяется при скорости движения до 120 км\час» — см. Примечание 4
Этап 1
— поршень начинает свое движение вниз
— открывается впускной клапан и в камеру сгорания поступает воздух.
— на фото: 1 — заряд воздуха, 2 — выемка в поршне для «отражения» потока воздуха
— так как геометрия впускного коллектора изменена, то протекающий через него воздух к началу поступления в камеру сгорания уже достаточно турубулизирован и имеет число Re около 1,000
— благодаря все той же измененной геометрии впускного коллектора, турбулизированный заряд воздуха имеет еще и свое направление. Он не просто «поступил» в камеру сгорания. Он «ворвался» в нее с такой силой, что достиг достиг поверхности поршня и начал от нее «отражаться».
— «закручивание и отражение» заряда воздуха
Тем самым число Re стало быстро увеличиваться.
Этап 2
— впускной клапан закрылся и поршень начинает свое движение вверх.
— турбулизация воздушного заряда ( число Re) продолжает увеличиваться вследствии увеличения давления и температуры внутри камеры сгорания
Этап 3
— в конце такта сжатия в камеру сгорания впрыскивается заряд топлива:
— стрелка на фото: поступившее в камеру сгорания топливо, которое (что хорошо заметно), так же «закручено».
А теперь посмотрим другую кинограмму, где разберем этом вопрос более детальнее:
Этап 1: «Заряд топлива поступает в камеру сгорания»
В этот момент в камере сгорания имеется:
— высокое давление
— высокая температура
— максимально возможное на данный момент число Re (максимальная турбулентность воздушного заряда)
Этап 2: «Топливо «ударяется» о поверхность пошня»
Если бы впрыск топлива происходил при «обычном» давлении, как на «обычном» двигателе, то перемешивание (гомогенизация) топливо-воздушной смеси была бы неполной.
Давление предопределяет скорость.
Как мы знаем, впрыск топлива в двигателе системы GDI происходит при высоком давлении, около 50 Бар (около 50 кг\см2).
Именно такое первоначальное давление + особая форма форсунки (см. статью в этом же разделе) когда топливо после нее становится «закрученным», позволило добиться того, что заряд топлива до удара о поршень остался практически неизменной формы и состава.
Этап 3: «Изгибание струи топлива»
Топливо – это та же «жидкость», только обладающая специфическими свойствами.
Кроме того, она имеет еще и «вязкость».
Поступившее в камеру сгорания топливо состоит из «слоев».
Попадая на поршень, один из слоев (нижний, по отношению к поршню) «прилипает» к поверхности поршня (на атомном уровне).
Между слоями возникают силы вязкого трения.
Около поверхности поршня формируется пограничный слой, скорость течения в котором меньше, чем в набегающем потоке топлива, а непосредственно на границе «поршень-топливо» равна нулю.
Так как скорость движения топлива в первом, прилегающем к поршню потоке намного меньше, чем в другом, расположенном «выше», то вследствии сил «вязкостного трения» происходит «отрыв» основного потока топлива от «пограничного» слоя.
Основной поток как бы «скользит» по пограничному слою и, следуя по нему, «повторяет» его форму и «загибается» вверх.
Этап 4: «Топливо отрывается» от поршня»
Надо отметить, что непосредственно внутри «выемки» число Re намного меньше, чем в остальном объеме камеры сгорания.
Это обусловлено особой формой «выемки» и созданными условиями (температура, давление).
Именно по этой причине «выстреленное в выемку» топливо может относительно полно следовать физическим законам и не терять своих «закрученных» свойств до того момента, как оно «оторвется» от поверхности поршня.
Кроме того, при отрыве основного потока топлива от поверхности тела, возрастает его скорость и оно начинает обладать «вращающим моментом».
Вспомним, что заряд топлива, который поступил в камеру сгорания, тоже был «закручен» благодаря особой конструкции самой форсунки.
По тем же законам физики, после «отрыва» основного потока топлива от поверности поршня, даже несмотря на его «закрученность», происходит «дробление» потока: более мелкие, обладающие невысокой скоростью и массой струи «отрываются» от основного потока и начинают «расходиться» по сторонам.
Вот здесь возникает самый интересный вопрос: » Почему же такая сверх-обедненная смесь может воспламеняться от свечи зажигания» — ?
Смотрим на следующее фото:
На этом фото из кинограммы работы двигателя (кинограмма снимается на специально созданном двигателе, где стенки поршня и сам поршень — прозрачные, изготовлены из специального материала и все процессы, происходящие внутри камеры сгорания можно хорошо видеть),- на этом фото видно, что внутри камеры сгорания образовалось несколько зон:
1 – зона обедненной топливо-воздушной смеси
2 – зона стехиометрического состава смеси
Все остальное пространство занято инертными газами и остатками ОГ.
Именно в зоне №2 состав топливо-воздушной смеси является стехиометрическим, где «лямбда» приблизительно равняется еденице, то есть, именно в этой зоне есть все условия для нормального воспламенения смеси.
Говоря немного по-другому, «Зона №2 является следствием того, что удалось хоть немного, но «приручить турбулентность».
Далее все развивается таким образом:
Искровой заряд свечи зажигания «поджигает» топливо-воздушную смесь, которая начинает гореть послойно – «layer-by-layer» ( позиции 1-2-3-4-5 на нижних рисунках):
Примечание 1: Действительно, сколько раз приходилось «запутывать голову», пытаясь с первого раза расшифровать написанные аббревиатуры: «ДМРВ», «ДВ», ДПКВ» и так далее.
Хотя проще всего (и правильнее, наверное?) сказать просто и понятно: «MAF-sensor», «MAP-sensor» и так далее. Не мы, не наша страна Россия, к сожалению, стала первой в массовом производстве систем управления двигателем и не нам внедрять и переламывать сознание и память тех Диагностов, которые были «взрощены» в начале 90-х годов прошлого века на крохах информации на английском языке.
Примечание 2: В предыдущей статье мы уже говорили, но немного повторимся и расширимся насчет «полноты информации», которую нам предоставляет Производитель.
Как уже было сказано, двигатель системы GDI может иметь три режима работы:
Ultra Lean Combustion Mode – впрыск топлива на такте сжатия
Superior Output Mode – врыск топлива на такте впуска
Two- stage nixing – впрыск топлива на такте впуска и такте сжатия
И все. И больше никакой информации. Но так ли все это на самом деле?
Мы не знаем, но можем предположить, что двигатель GDI «может иметь» еще и другие режимы работы, точнее сказать — «подрежимы», когда впрыск топлива происходит, например, после возгорания смеси и поршень «идет» вниз.
Примечание 3: «…работы Рейнольдса, теорема Рейнольдса…». Увы, пока ничего не доказано и, надо полагать, доказано еще будет не скоро. Это приблизительно тоже самое, как и попытки измерения скорости света. Здесь все принимается на веру, но…так надо, потому что, что бы двигаться далее в своем развитии, надо всегда на что-то опираться. И пока не сказано или не доказано другое, отличное от теоремы Рейнольдса — будем «опираться» на нее?
Для бОльшего понимания.
Примечание 4: » Рассмотрим работу двигателя в режиме Ultra – Lean Combustion Mode.
Это режим работы двигателя на сверх-обедненной ТВС.
В этом случае «лямбда» больше еденицы («мало топлива, много воздуха»).
Этот режим используется при движении автомобиля с постоянной скоростью и неизменностью нагрузки. «Но надо обязательно отметить, что этот режим применяется при скорости движения до 120 км\час»
Это примечание, где написано, что данный режим применяется до скорости 120 км.час — оно из книг, из Интернета.
Я его специально сюда вставил…
Но нигде не сказано — «почему» — ???
А мы скажем, мы постараемся разобраться и кое-что опровергнуть.
«Слукавили наши уважаемые узкоглазые господа».
При запуске двигателя инициализируется один режим работы: «много топлива, мало воздуха или воздуха достаточное количество» — для компенсации ухудшенных свойств испаряемости топлива и прогрева двигателя.
Ни один водитель, за исключением запрограмированного робота не сможет «поднимать» скорость до 120 км.час «плавно и осторожно» — всегда будет какое-то ускорение.
А это уже изменение режима работы, он может стать в какой-то момент и на какой-то период «мощностным», когда опять-таки, для ускорения потребуется «много топлива».
Это может быть режим Two-stage mixing или какой-то другой, с каким-то другим видом «подвпрыска», о котором «забыли» упомянуть наши узкоглазые товарищи.
Потому что «вам это не надо».
«Вы должны знать столько, сколько мы вам разрешим знать».
То есть, тем самым производители «придерживают» информацию, что бы не раскрывать всех своих секретов и не «плодить» конкурентов.
С одной стороны, может быть, это и правильно…
Но с другой стороны — ?
Вы знаете, многим это действительно достаточно!
Просто удивительно…
Удивительно, что многим достаточно только то, что им дается «прямо в руки», они совершенно не приспособлены Думать, Теоретезировать, Прогнозировать.
В школе так учили?
«От сих и до сих».
Фирмам не нужны «шибко умные», потому что такими людьми трудно управлять.
Впрочем, это уже тема для другой статьи — о дилерах и полу-дилерах.
Эта статья будет о том, как Россию пытаются «нагнуть»…
Владимир Петрович Кучер
Техно теория – собираем мощный мотор, выбираем поршневую | Тюнинг автомобилей
Поршень — одна из деталей, скрытых в недрах силового агрегата, благодаря изменению конфигурации которых можно повысить как отдачу, так и ходи мость мотора. Конструктивные нюансы поршней, реализуемых на вторичном рынке, помогают решить эти задачи.
Автор: Алексей Романов, фото из разных источников
История развития поршня
За более чем 140-летнюю историю развития двигателей внутреннего сгорания основные функции и конструктивные основы поршней не изменились. Эта цилиндрическая деталь формирует нижнюю половину камеры сгорания и передает энергию, расширяющихся в цилиндре газов через поршневой палец и шатун к коленчатому валу. Для предотвращения прорыва газов в картер и масла в камеру сгорания, как и на поршнях самых первых моторов, установлены кольца. Условия же работы стали другими — возросли и нагрузки, и температуры.
В тоже самое время, двигатели работают чище, а ходимость их гораздо выше, чем раньше. Именно с этим в первую очередь связаны основные изменения конструкции, применении новых сплавов поршней и колец, широкое использование специальных покрытий. Поршни становятся короче и легче. Частично снижение веса было достигнуто уменьшением как общей высоты поршней, так и укорачиванием отдельных элементов.
Информация – кольца поршневой
На выбор колец также влияет и устройство системы смазки мотора. Система с «мокрым» картером требует от маслоудерживающих колец меньшей упругости, тогда как с «сухим» — большей.
За последние 30 лет типичная высота юбок сократилась с 60-65 мм до 35-40 мм. Такое облегчение потребовало уменьшения до 0.025-0.125 мм зазора между и стенками цилиндра поршнем, дабы убавить его раскачивание во время движения.
В спортивных моторах, где юбка практически отсутствует вовсе, возможен и нулевой зазор или даже небольшой натяг, если поршни имеют специальные антифрикционные покрытия. Расстояние от центра поршневого пальца до вершины днища поршня, называемое компрессионной высотой, за те же последние три десятилетия сократилось с 38-44 мм до 30-33 мм.
Форма поверхности днища поршней также менялась. Плоскости уступили место вогнутым, более сложным конфигурациям, обеспечивающим циркуляцию топливовоздушной смеси и улучшающим отвод отработавших газов. Самое критическое место на поршне в области верхнего компрессионного кольца. Еще десятилетие назад, высота жарового пояса (расстояния между верхним компрессионным кольцом и кромкой днища) обычно составляла 7.5 — 8.0 мм. Сегодня оно уменьшилось до 3.0-3,5 мм в большинстве двигателей.
Информация поршень
Некоторые конструкции короны поршня разработаны с цепью снижения вредных веществ в выхлопных газах и лучшей топливной экономичности. Чтобы эти показатели после переборки оставались в заводских пределах поршни, заменяемые на стоковых моторах, должны был, с идентичной формой короны.
Передвижение компрессионного кольца ближе к вершине поршня во многом вызвано борьбой за полноту сгорания смеси и, как следствие, за уменьшение вредных выбросов. Дело в том, что щелевое пространство между жаровым поясом и стенкой цилиндра создает мертвую зону для распространения пламени топливовоздушной смеси, и там остается не сожженное топливо. Само по себе это количество мало, но если умножить его на четверть частоты вращения коленвала и на количество цилиндров, то становится понятно, что углеводороды, спрятавшиеся в этом месте, заметно повышают уровень СН в выхлопе двигателя.
Руководство для начинающих: что такое поршень (и для чего он нужен)?
Поршни составляют основу поршневого двигателя внутреннего сгорания, поэтому их часто называют «поршневыми двигателями». По сути, поршень представляет собой сплошной металлический цилиндр, который движется вверх и вниз в полом цилиндре блока цилиндров . Сам поршень немного меньше отверстия, в которое он входит, но у него есть поршневые кольца, находящиеся под напряжением, чтобы обеспечить (почти) воздухонепроницаемое уплотнение после его установки в цилиндр двигателя.Поршень прикреплен с помощью пальца к шатуну, который, в свою очередь, соединен с коленчатым валом, и вместе они превращают движение вверх и вниз (возвратно-поступательное) в круговое и круговое (вращательное) движение, приводя в движение колеса.
Двигатели внутреннего сгорания могут работать только с одним цилиндром и, следовательно, с одним поршнем (мотоциклы и газонокосилки) или с 12 двигателями, но у большинства автомобилей их четыре, шесть или восемь.
Поршни также используются в двигателях внешнего сгорания, также известных как паровые двигатели, где вода нагревается в котле, а образующийся пар используется для приведения в движение поршней во внешних цилиндрах, которые затем приводят в движение колеса.
В роторном двигателе нет поршней, цилиндров или клапанов, только вращающиеся роторы треугольной формы. Но в настоящее время роторные двигатели Ванкеля не производятся, последним из них стала Mazda RX-8 в 2012 году.
В каждом четырехтактном (бензиновом или дизельном) двигателе автомобиля процессы впуска, сжатия, сгорания и выпуска происходят над головкой поршня, что заставляет поршень двигаться вверх и вниз (или из стороны в сторону в горизонтально расположенных двигателях. , как Porsche или Subaru) внутри цилиндра.Поршень толкает вверх, сжимая топливо и воздух в гораздо меньшее пространство в головке блока цилиндров, где он воспламеняется свечой зажигания. В результате взрыва поршень опускается, образуя выхлопные газы. Более полное объяснение можно найти здесь или на анимации ниже.
Из чего сделаны поршни?
Компоненты двигателя сегодня должны быть прочными для долговечности и легкими для повышения эффективности. Это означает, что все поршни в той или иной форме изготовлены из алюминиевого сплава.Но еще на заре эры безлошадных повозок поршни делали из чугуна, потому что они очень долго изнашивались и устойчивы к нагреванию, которое могло быстро расплавить алюминий. По мере развития металлургии и более точного контроля температуры за счет более эффективной конструкции легкость алюминия быстро взяла верх и позволила достичь гораздо более высоких оборотов в минуту.
Поршневые кольца продолжали изготавливаться из чугуна и стальных сплавов из-за более высокой жесткости пружины. Комплект колец обычно включает сверху вниз компрессионное кольцо, грязесъемное кольцо и маслосъемное кольцо, все они изготовлены из чугуна или стали.
Компрессионное кольцо закрывает зазор между поршнем и цилиндром. Второе, грязесъемное кольцо, способствует сжатию, а также удаляет излишки масла со стенок цилиндра при движении поршня вниз. Масляное кольцо на самом деле состоит из 2 колец и расширителя в большинстве двигателей, оно также вытирает масло со стенок цилиндра, а затем позволяет ему стекать обратно через небольшие отверстия в посадочной поверхности кольца. Но со временем кольца могут изнашиваться и терять эластичность, позволяя маслу из картера двигателя перемещаться в камеру сгорания.Чрезмерный расход масла и голубоватый дым из выхлопных труб обычно указывает на износ поршневых колец.
определение поршня по The Free Dictionary
поршеньв двигателе внутреннего сгорания
поршня
(пĭстьн) н.1. Сплошной цилиндр или диск, который плотно прилегает к большему цилиндру и движется под давлением жидкости, как в поршневом двигателе, или смещает или сжимает жидкости, как в насосах и компрессорах.
2. Музыка Клапанный механизм в медных духовых инструментах для изменения высоты звука.
[французский, от итальянского поршня, pestone, большой пестик , от pestare, до фунта, раздавить , от позднего латинского пистара, частого от латинского pīnsere, pīnsāre.]
Словарь английского языка American Heritage® , Издание пятое. Авторское право © 2016 Издательская компания Houghton Mifflin Harcourt. Опубликовано Houghton Mifflin Harcourt Publishing Company. Все права защищены.
поршень
(ˈpɪstən) n(Automotive Engineering) диск или цилиндрическая часть, которая скользит взад и вперед в полом цилиндре. В двигателе внутреннего сгорания он приводится в движение расширяющимися газами в головке блока цилиндров и прикреплен поворотным шатуном к коленчатому валу или маховику, таким образом преобразуя возвратно-поступательное движение во вращение
[C18: с французского с древнеитальянского поршневой, от поршневой до фунта, измельчения, от латинского pinsere чтобы раздавить, разбить]
Словарь английского языка Коллинза — полный и полный, 12-е издание, 2014 г. © HarperCollins Publishers 1991, 1994, 1998, 2000, 2003, 2006, 2007, 2009, 2011, 2014
pis • ton
(ˈpˈs tən)n.
1. диск или твердый цилиндр, движущийся внутри более длинного цилиндра и оказывающий давление на жидкость или газ или получающий от них давление.
2. насосный клапан, используемый для изменения шага в корнете и т.п.
[1695–1705; <Французский <Итальянский поршень Поршень , научная переделка. pestone big pestle = pest (are) to pound (вариант средневековой латыни histare, производное от латинского pīstus, причастие прошедшего времени от pīnsere to pound) + -one увеличивающий суффикс]
Пис • тон
(ˈпˈс тəн)н.
Уолтер, 1894–1976, американский композитор.
Random House Словарь колледжа Керермана Вебстера © 2010 K Dictionaries Ltd. Авторские права 2005, 1997, 1991, Random House, Inc. Все права защищены.
поршеньТопливно-воздушная смесь в левой камере расширяется при воспламенении от свечи зажигания, толкая поршень вниз и поворачивая вал, к которому он прикреплен. Поворотный вал приводит в движение поршень правого цилиндра вверх. Затем он будет выталкиваться вниз таким же образом, когда топливно-воздушная смесь входит в эту камеру и воспламеняется.Поочередное действие двух поршней обеспечивает вращение вала.
поршня
(pĭs′tən)Цельный цилиндр или диск, который плотно входит в полый цилиндр и перемещается вперед и назад под давлением жидкости, как во многих двигателях, или перемещает или сжимает жидкость, как в насосе или компрессоре.
Научный словарь для студентов American Heritage®, второе издание. Авторские права © 2014 издательской компании Houghton Mifflin Harcourt. Опубликовано Houghton Mifflin Harcourt Publishing Company.Все права защищены.
Что такое юбка поршня? (с иллюстрациями)
Юбка поршня — это часть поршня, которая выступает в самой нижней части. Его задача — удерживать поршень от чрезмерного раскачивания в цилиндре. Как правило, на нем есть небольшие канавки, которые помогают удерживать и транспортировать масло к стенкам цилиндра для обеспечения надлежащей смазки. В некоторых высокопроизводительных приложениях юбка поршня может быть покрыта химическим веществом, которое способствует смазке и предотвращает образование задиров на стенке цилиндра.
Юбка поршня — это нижняя часть поршней цилиндрической формы.В двигателе внутреннего сгорания поршни уплотнены внутри стенок цилиндра поршневыми кольцами. Кольца, как их называют, соприкасаются со стенкой цилиндра, в то время как поршень движется вверх и вниз по центру колец в стенке цилиндра.Вверху и внизу каждого хода, когда поршень меняет направление, поршень качается. Именно тогда юбка поршня соприкасается со стенкой цилиндра, снова выпрямляя поршень, чтобы продолжить свой путь.
В зависимости от хода коленчатого вала и длины шатуна юбка поршня может контактировать с коленчатым валом в самом низу его хода.В зависимости от хода коленчатого вала и длины шатуна, юбка поршня может соприкасаться с коленчатым валом в самом низу хода или хода. Это особенно часто встречается в высокопроизводительных двигателях, известных как двигатели хода. В моторе такта ход двигателя был изменен путем замены на более длинный ход коленчатого вала, а также изменения длины шатунов.Положение поршневого пальца изменяется, создавая новое место для соединения поршня с шатуном.
В типичном применении строкера блок двигателя должен иметь выемки в нижней части стенок цилиндра, чтобы коленчатый вал и шатуны не соприкасались с блоком.Часто в нижней части юбки поршня также должен быть зазор, чтобы избежать контакта с шатуном, когда он вращается вокруг хода коленчатого вала. При зачистке юбки поршня будет разумно сделать одинаковый разрез на обеих сторонах юбки. Это поддерживает баланс внутри возвратно-поступательных компонентов. Даже самое незначительное удаление материала может привести к опасному дисбалансу компонентов, что приведет к катастрофическому отказу двигателя.
Одним из явных признаков того, что двигатель работал при низком уровне масла, является потертость на юбке поршня.По мере того как поршень перемещается вверх и вниз по стенке цилиндра, недостаток масла может привести к истиранию юбки поршня или истиранию стенки цилиндра, оставляя заметный след истирания. Когда это происходит, часто пора заменить поршни, а также расточить цилиндры, чтобы удалить царапины.
Как предотвратить заболевание ОРВИ у ребенка. Какие меры профилактики наиболее действенны. Что делать, если ребенок все-таки заболел ОРВИ. Какие средства помогут быстрее справиться с вирусной . . .
Какие виды бандажей для беременных бывают. Как правильно подобрать и носить бандаж во время беременности. Когда нужно начинать использовать бандаж. Какие есть показания и противопоказания . . .