9 типичных неисправностей электродвигателя и способы их устранения
В этом обзоре мы рассмотрим типичные неисправности трехфазных асинхронных электродвигателей и способы их предупреждения и устранения.
Электрические неисправности электродвигателя
Электрические неисправности двигателя всегда связаны с обмоткой.
- Межвитковое замыкание может возникнуть при ухудшении изоляции в пределах одной обмотки. Возможные причины: перегрев обмотки, некачественная изоляция, износ изоляции вследствие вибрации. Определить межвитковое замыкание бывает сложно. Основной метод диагностики – сравнение сопротивления и рабочего тока всех трех обмоток. Первые симптомы межвиткового замыкания – повышенный нагрев двигателя и падение момента на валу. При этом по одной из фаз ток больше, чем по двум другим.
- Замыкание между обмотками происходит из-за смещения обмоток, механической вибрации и ударов. При отсутствии должной электрической защиты может возникнуть короткое замыкание и пожар.
- Замыкание обмотки на корпус. При данной неисправности электродвигатель может продолжать работать, если неправильно выполнены заземление и защита от короткого замыкания. Однако в работе он будет смертельно опасен, так как его потенциал будет находиться под фазным напряжением.
- Обрыв обмотки. Эта неисправность равносильна пропаданию фазы. Если обрыв происходит в работе, то двигатель резко теряет мощность и начинает перегреваться. При правильно выполненной защите двигатель отключится, поскольку ток по другим фазам будет повышен.
Для устранения большинства из этих поломок требуется перемотка двигателя.
Механические неисправности электродвигателя
Механические неисправности электродвигателя связаны с его конструкцией.
- Износ и трение в подшипниках. Проявляется в повышении механической вибрации и шума при работе. В этом случае требуется замена подшипников, иначе неисправность приведет к перегреву и падению производительности двигателя.
- Проворачивание ротора на валу. Ротор может вращаться в магнитном поле статора, а вал будет неподвижен. Требуется механическая фиксация ротора на валу.
- Зацепление ротора за статор
- Повреждение корпуса двигателя. Может происходить из-за ударов, повышенных нагрузок, неправильного крепления или низкого качества двигателя. Ремонт является трудоемким из-за трудностей соосной установки переднего и заднего подшипников.
- Проворачивание или повреждение крыльчатки обдува. Несмотря на то, что двигатель продолжит работать, он будет перегреваться, что существенно сократит срок его службы. Крыльчатку необходимо закрепить (для этого используется шпонка или стопорное кольцо) или заменить.
Аварийные ситуации при работе электродвигателя
Существуют неисправности, не связанные непосредственно с двигателем, но влияющие на его работу, характеристики и срок службы. Большинство этих неисправностей вызваны механической перегрузкой, увеличением тока, и, как следствие, перегревом обмоток и корпуса.
- Увеличение нагрузки на валу вследствие заклинивания привода либо приводимых механизмов.
- Перекос напряжения питания, который может быть вызван проблемами питающей сети либо внутренними проблемами привода.
- Пропадание фазы, которое может произойти на любом участке питания двигателя – от питающей трансформаторной подстанции до обмотки двигателя.
- Проблема с обдувом (охлаждением). Может возникнуть из-за повреждения крыльчатки двигателя при собственном охлаждении, из-за останова вентилятора внешнего принудительного охлаждения или вследствие значительного повышения температуры окружающей среды.
Способы защиты электродвигателя
Для защиты электродвигателя от внутренних и внешних неисправностей, а также для минимизации дальнейших трудозатрат по его ремонту применяют различные устройства.
1. Мотор-автоматы и тепловые реле
В отличие от мотор-автомата, у теплового реле нет силовой коммутации. Оно имеет только управляющий контакт, который размыкает питание силовой цепи. Мотор-автомат является самостоятельным коммутационным устройством, способным выключать двигатель.
Минус теплового реле заключается в отсутствии защиты от короткого замыкания. Мотор-автомат имеет защиту от перегрузки и электромагнитную защиту от короткого замыкания, которая мгновенно срабатывает и выключает двигатель при превышении тока уставки в 10-20 раз.
Данные устройства используются наиболее широко и при правильной установке и настройке способны с большой долей вероятности защитить электродвигатель и оборудование от поломки и других негативных последствий.
2. Электронные реле защиты двигателей
Данный вид защиты обеспечивает большой выбор различных защит. Основным элементом таких реле является микропроцессор, который анализирует мгновенные значения напряжения и тока и принимает решения на основе заданных настроек. Это может быть выдача сигнала на индикацию либо на отключение двигателя.
3. Термисторы и термореле
Возможно применение более простых дискретных термореле (термоконтактов), которые размыкают контрольную или тепловую цепь, что приводит к аварийной остановке электродвигателя.
4. Преобразователи частоты
Обычно преобразователи частоты располагают несколькими видами защиты – по превышению момента и тока, по превышению напряжения, обрыву фазы и проч.
Также производители частотных преобразователей рекомендуют устанавливать защитный автомат на входе ПЧ, тепловое реле на выходе и термисторную защиту.
Другие полезные материалы:
Выбор электродвигателя для компрессора
Как определить параметры двигателя без шильдика?
Почему греется электродвигатель
Принцип работы электродвигателя это преобразование электрической энергии в механическую созданием и дальнейшим воздействием электромагнитного поля в статоре на ротор. В независимости от того трехфазный у вас эл двигатель или однофазный, стандарта ГОСТ или DIN, крановый или степени защиты IP23, электрический ток в нем протекает через проводник, что непременно его нагревает в соответствии с законами естественных наук. Однако если через обмотку электродвигателя проходит ток выше номинального, изначально рассчитанного конструкторами, то этот электромотор будет чрезмерно нагреваться. Превышение допустимой температуры для нормальной работы электродвигателя может возникать и по ряду других причин. Этот бесконтрольный процесс неизменно приведет к расплавлению заводского лака обмотки и, в конечном счете, короткому замыканию проводников.
Греется электродвигатель. Причины:
- Перегрузка и эксплуатация в недопустимом режиме, механические воздействия на агрегат, нарушение целостности мотора.
- Эксплуатация агрегата в условиях, не соответствующих климатическому исполнению (резкие перепады температур и повышенная влажность).
- Неправильное хранение, монтаж и транспортировка.
- Эксплуатация электродвигателя при повышенном или пониженном напряжении питающей сети.
- Небрежное отношение к эксплуатации агрегата и как следствие засорение вентиляционных каналов.
- Неисправность подшипников электродвигателя, (плохое прокручивание, вибрация или полное зацикливание ротора).
- Отсутствие или перекос фаз (запуск электродвигателя на двух фазах или отключение одной из фаз при работе двигателя).
- Ошибки при подключении электродвигателя (если на шильде указано подключение треугольником на 220В, а звездой на 380В, вместо подключения треугольником на 220В, подключить его на 380В)
- Разбалансировка привода или детали на валу электродвигателя (как следствие возникновение биения вала).
- Неправильная эксплуатация при работе от частотного преобразователя, вследствие возникновения высокочастотных токов (для мощных двигателей обязательно наличие
токоизолирующих подшипников)
Необходимо полностью соблюдать рекомендации инструкции по применению, как при подключении мотора, так и при его дальнейшей работе, эксплуатировать мотор в соответствии с условиями его климатического исполнения и режима работы. Помимо этого необходимо регулярно производить техническое обслуживание агрегатов и проверять на предмет неисправностей. В таком случае ваш эл двигатель проработает не менее 5 лет, и не будет нагреваться.
Электродвигатель АИР характеристики
Тип двигателя | Р, кВт | Номинальная частота вращения, об/мин | кпд,* | COS ф | 1п/1н | Мп/Мн | Мmах/Мн | 1н, А | Масса, кг |
Купить АИР56А2 | 0,18 | 2840 | 68,0 | 0,78 | 5,0 | 2,2 | 2,2 | 0,52 | 3,4 |
Купить АИР56В2 | 0,25 | 2840 | 68,0 | 0,698 | 5,0 | 2,2 | 2,2 | 0,52 | 3,9 |
Купить АИР56А4 | 0,12 | 1390 | 63,0 | 0,66 | 5,0 | 2,1 | 2,2 | 0,44 | 3,4 |
Купить АИР56В4 | 0,18 | 1390 | 64,0 | 0,68 | 5,0 | 2,1 | 2,2 | 0,65 | 3,9 |
Купить АИР63А2 | 0,37 | 2840 | 72,0 | 0,86 | 5,0 | 2,2 | 2,2 | 0,91 | 4,7 |
Купить АИР63В2 | 0,55 | 2840 | 75,0 | 0,85 | 5,0 | 2,2 | 2,3 | 1,31 | 5,5 |
Купить АИР63А4 | 0,25 | 1390 | 68,0 | 0,67 | 5,0 | 2,1 | 2,2 | 0,83 | 4,7 |
Купить АИР63В4 | 0,37 | 1390 | 68,0 | 0,7 | 5,0 | 2,1 | 2,2 | 1,18 | 5,6 |
Купить АИР63А6 | 0,18 | 880 | 56,0 | 0,62 | 4,0 | 1,9 | 2 | 0,79 | 4,6 |
Купить АИР63В6 | 0,25 | 880 | 59,0 | 0,62 | 4,0 | 1,9 | 2 | 1,04 | 5,4 |
Купить АИР71А2 | 0,75 | 2840 | 75,0 | 0,83 | 6,1 | 2,2 | 2,3 | 1,77 | 8,7 |
Купить АИР71В2 | 1,1 | 2840 | 76,2 | 0,84 | 6,9 | 2,2 | 2,3 | 2,6 | 10,5 |
Купить АИР71А4 | 0,55 | 1390 | 71,0 | 0,75 | 5,2 | 2,4 | 2,3 | 1,57 | 8,4 |
Купить АИР71В4 | 0,75 | 1390 | 73,0 | 0,76 | 6,0 | 2,3 | 2,3 | 2,05 | 10 |
Купить АИР71А6 | 0,37 | 880 | 62,0 | 0,70 | 4,7 | 1,9 | 2,0 | 1,3 | 8,4 |
Купить АИР71В6 | 0,55 | 880 | 65,0 | 0,72 | 4,7 | 1,9 | 2,1 | 1,8 | 10 |
Купить АИР71А8 | 0,25 | 645 | 54,0 | 0,61 | 4,7 | 1,8 | 1,9 | 1,1 | 9 |
Купить АИР71В8 | 0,25 | 645 | 54,0 | 0,61 | 4,7 | 1,8 | 1,9 | 1,1 | 9 |
Купить АИР80А2 | 1,5 | 2850 | 78,5 | 0,84 | 7,0 | 2,2 | 2,3 | 3,46 | 13 |
Купить АИР80А2ЖУ2 | 1,5 | 2850 | 78,5 | 0,84 | 7,0 | 2,2 | 2,3 | 3,46 | 13 |
Купить АИР80В2 | 2,2 | 2855 | 81,0 | 0,85 | 7,0 | 2,2 | 2,3 | 4,85 | 15 |
Купить АИР80В2ЖУ2 | 2,2 | 2855 | 81,0 | 0,85 | 7,0 | 2,2 | 2,3 | 4,85 | 15 |
Купить АИР80А4 | 1,1 | 1390 | 76,2 | 0,77 | 6,0 | 2,3 | 2,3 | 2,85 | 14 |
Купить АИР80В4 | 1,5 | 1400 | 78,5 | 0,78 | 6,0 | 2,3 | 2,3 | 3,72 | 16 |
Купить АИР80А6 | 0,75 | 905 | 69,0 | 0,72 | 5,3 | 2,0 | 2,1 | 2,3 | 14 |
Купить АИР80В6 | 1,1 | 905 | 72,0 | 0,73 | 5,5 | 2,0 | 2,1 | 3,2 | 16 |
Купить АИР80А8 | 0,37 | 675 | 62,0 | 0,61 | 4,0 | 1,8 | 1,9 | 1,49 | 15 |
Купить АИР80В8 | 0,55 | 680 | 63,0 | 0,61 | 4,0 | 1,8 | 2,0 | 2,17 | 18 |
Купить АИР90L2 | 3,0 | 2860 | 82,6 | 0,87 | 7,5 | 2,2 | 2,3 | 6,34 | 17 |
Купить АИР90L2ЖУ2 | 3,0 | 2860 | 82,6 | 0,87 | 7,5 | 2,2 | 2,3 | 6,34 | 17 |
Купить АИР90L4 | 2,2 | 1410 | 80,0 | 0,81 | 7,0 | 2,3 | 2,3 | 5,1 | 17 |
Купить АИР90L6 | 1,5 | 920 | 76,0 | 0,75 | 5,5 | 2,0 | 2,1 | 4,0 | 18 |
Купить АИР90LA8 | 0,75 | 680 | 70,0 | 0,67 | 4,0 | 1,8 | 2,0 | 2,43 | 23 |
Купить АИР90LB8 | 1,1 | 680 | 72,0 | 0,69 | 5,0 | 1,8 | 2,0 | 3,36 | 28 |
Купить АИР100S2 | 4,0 | 2880 | 84,2 | 0,88 | 7,5 | 2,2 | 2,3 | 8,2 | 20,5 |
Купить АИР100S2ЖУ2 | 4,0 | 2880 | 84,2 | 0,88 | 7,5 | 2,2 | 2,3 | 8,2 | 20,5 |
Купить АИР100L2 | 5,5 | 2900 | 85,7 | 0,88 | 7,5 | 2,2 | 2,3 | 11,1 | 28 |
Купить АИР100L2ЖУ2 | 5,5 | 2900 | 85,7 | 0,88 | 7,5 | 2,2 | 2,3 | 11,1 | 28 |
Купить АИР100S4 | 3,0 | 1410 | 82,6 | 0,82 | 7,0 | 2,3 | 2,3 | 6,8 | 21 |
Купить АИР100L4 | 4,0 | 1435 | 84,2 | 0,82 | 7,0 | 2,3 | 2,3 | 8,8 | 37 |
Купить АИР100L6 | 2,2 | 935 | 79,0 | 0,76 | 6,5 | 2,0 | 2,1 | 5,6 | 33,5 |
Купить АИР100L8 | 1,5 | 690 | 74,0 | 0,70 | 5,0 | 1,8 | 2,0 | 4,4 | 33,5 |
Купить АИР112M2 | 7,5 | 2895 | 87,0 | 0,88 | 7,5 | 2,2 | 2,3 | 14,9 | 49 |
Купить АИР112М2ЖУ2 | 7,5 | 2895 | 87,0 | 0,88 | 7,5 | 2,2 | 2,3 | 14,9 | 49 |
Купить АИР112М4 | 5,5 | 1440 | 85,7 | 0,83 | 7,0 | 2,3 | 2,3 | 11,7 | 45 |
Купить АИР112MA6 | 3,0 | 960 | 81,0 | 0,73 | 6,5 | 2,1 | 2,1 | 7,4 | 41 |
Купить АИР112MB6 | 4,0 | 860 | 82,0 | 0,76 | 6,5 | 2,1 | 2,1 | 9,75 | 50 |
Купить АИР112MA8 | 2,2 | 710 | 79,0 | 0,71 | 6,0 | 1,8 | 2,0 | 6,0 | 46 |
Купить АИР112MB8 | 3,0 | 710 | 80,0 | 0,73 | 6,0 | 1,8 | 2,0 | 7,8 | 53 |
Купить АИР132M2 | 11 | 2900 | 88,4 | 0,89 | 7,5 | 2,2 | 2,3 | 21,2 | 54 |
Купить АИР132М2ЖУ2 | 11 | 2900 | 88,4 | 0,89 | 7,5 | 2,2 | 2,3 | 21,2 | 54 |
Купить АИР132S4 | 7,5 | 1460 | 87,0 | 0,84 | 7,0 | 2,3 | 2,3 | 15,6 | 52 |
Купить АИР132M4 | 11 | 1450 | 88,4 | 0,84 | 7,0 | 2,2 | 2,3 | 22,5 | 60 |
Купить АИР132S6 | 5,5 | 960 | 84,0 | 0,77 | 6,5 | 2,1 | 2,1 | 12,9 | 56 |
Купить АИР132M6 | 7,5 | 970 | 86,0 | 0,77 | 6,5 | 2,0 | 2,1 | 17,2 | 61 |
Купить АИР132S8 | 4,0 | 720 | 81,0 | 0,73 | 6,0 | 1,9 | 2,0 | 10,3 | 70 |
Купить АИР132M8 | 5,5 | 720 | 83,0 | 0,74 | 6,0 | 1,9 | 2,0 | 13,6 | 86 |
Купить АИР160S2 | 15 | 2930 | 89,4 | 0,89 | 7,5 | 2,2 | 2,3 | 28,6 | 116 |
Купить АИР160S2ЖУ2 | 15 | 2930 | 89,4 | 0,89 | 7,5 | 2,2 | 2,3 | 28,6 | 116 |
Купить АИР160M2 | 18,5 | 2930 | 90,0 | 0,90 | 7,5 | 2,0 | 2,3 | 34,7 | 130 |
Купить АИР160М2ЖУ2 | 18,5 | 2930 | 90,0 | 0,90 | 7,5 | 2,0 | 2,3 | 34,7 | 130 |
Купить АИР160S4 | 15 | 1460 | 89,4 | 0,85 | 7,5 | 2,2 | 2,3 | 30,0 | 125 |
Купить АИР160S4ЖУ2 | 15 | 1460 | 89,4 | 0,85 | 7,5 | 2,2 | 2,3 | 30,0 | 125 |
Купить АИР160M4 | 18,5 | 1470 | 90,0 | 0,86 | 7,5 | 2,2 | 2,3 | 36,3 | 142 |
Купить АИР160S6 | 11 | 970 | 87,5 | 0,78 | 6,5 | 2,0 | 2,1 | 24,5 | 125 |
Купить АИР160M6 | 15 | 970 | 89,0 | 0,81 | 7,0 | 2,0 | 2,1 | 31,6 | 155 |
Купить АИР160S8 | 7,5 | 720 | 85,5 | 0,75 | 6,0 | 1,9 | 2,0 | 17,8 | 125 |
Купить АИР160M8 | 11 | 730 | 87,5 | 0,75 | 6,5 | 2,0 | 2,0 | 25,5 | 150 |
Купить АИР180S2 | 22 | 2940 | 90,5 | 0,90 | 7,5 | 2,0 | 2,3 | 41,0 | 150 |
Купить АИР180S2ЖУ2 | 22 | 2940 | 90,5 | 0,90 | 7,5 | 2,0 | 2,3 | 41,0 | 150 |
Купить АИР180M2 | 30 | 2950 | 91,4 | 0,90 | 7,5 | 2,0 | 2,3 | 55,4 | 170 |
Купить АИР180М2ЖУ2 | 30 | 2950 | 91,4 | 0,90 | 7,5 | 2,0 | 2,3 | 55,4 | 170 |
Купить АИР180S4 | 22 | 1470 | 90,5 | 0,86 | 7,5 | 2,2 | 2,3 | 43,2 | 160 |
Купить АИР180S4ЖУ2 | 22 | 1470 | 90,5 | 0,86 | 7,5 | 2,2 | 2,3 | 43,2 | 160 |
Купить АИР180M4 | 30 | 1470 | 91,4 | 0,86 | 7,2 | 2,2 | 2,3 | 57,6 | 190 |
Купить АИР180М4ЖУ2 | 30 | 1470 | 91,4 | 0,86 | 7,2 | 2,2 | 2,3 | 57,6 | 190 |
Купить АИР180M6 | 18,5 | 980 | 90,0 | 0,81 | 7,0 | 2,1 | 2,1 | 38,6 | 160 |
Купить АИР180M8 | 15 | 730 | 88,0 | 0,76 | 6,6 | 2,0 | 2,0 | 34,1 | 172 |
Купить АИР200M2 | 37 | 2950 | 92,0 | 0,88 | 7,5 | 2,0 | 2,3 | 67,9 | 230 |
Купить АИР200М2ЖУ2 | 37 | 2950 | 92,0 | 0,88 | 7,5 | 2,0 | 2,3 | 67,9 | 230 |
Купить АИР200L2 | 45 | 2960 | 92,5 | 0,90 | 7,5 | 2,0 | 2,3 | 82,1 | 255 |
Купить АИР200L2ЖУ2 | 45 | 2960 | 92,5 | 0,90 | 7,5 | 2,0 | 2,3 | 82,1 | 255 |
Купить АИР200M4 | 37 | 1475 | 92,0 | 0,87 | 7,2 | 2,2 | 2,3 | 70,2 | 230 |
Купить АИР200L4 | 45 | 1475 | 92,5 | 0,87 | 7,2 | 2,2 | 2,3 | 84,9 | 260 |
Купить АИР200M6 | 22 | 980 | 90,0 | 0,83 | 7,0 | 2,0 | 2,1 | 44,7 | 195 |
Купить АИР200L6 | 30 | 980 | 91,5 | 0,84 | 7,0 | 2,0 | 2,1 | 59,3 | 225 |
Купить АИР200M8 | 18,5 | 730 | 90,0 | 0,76 | 6,6 | 1,9 | 2,0 | 41,1 | 210 |
Купить АИР200L8 | 22 | 730 | 90,5 | 0,78 | 6,6 | 1,9 | 2,0 | 48,9 | 225 |
Купить АИР225M2 | 55 | 2970 | 93,0 | 0,90 | 7,5 | 2,0 | 2,3 | 100 | 320 |
Купить АИР225M4 | 55 | 1480 | 93,0 | 0,87 | 7,2 | 2,2 | 2,3 | 103 | 325 |
Купить АИР225M6 | 37 | 980 | 92,0 | 0,86 | 7,0 | 2,1 | 2,1 | 71,0 | 360 |
Купить АИР225M8 | 30 | 735 | 91,0 | 0,79 | 6,5 | 1,9 | 2,0 | 63 | 360 |
Купить АИР250S2 | 75 | 2975 | 93,6 | 0,90 | 7,0 | 2,0 | 2,3 | 135 | 450 |
Купить АИР250M2 | 90 | 2975 | 93,9 | 0,91 | 7,1 | 2,0 | 2,3 | 160 | 530 |
Купить АИР250S4 | 75 | 1480 | 93,6 | 0,88 | 6,8 | 2,2 | 2,3 | 138,3 | 450 |
Купить АИР250M4 | 90 | 1480 | 93,9 | 0,88 | 6,8 | 2,2 | 2,3 | 165,5 | 495 |
Купить АИР250S6 | 45 | 980 | 92,5 | 0,86 | 7,0 | 2,1 | 2,0 | 86,0 | 465 |
Купить АИР250M6 | 55 | 980 | 92,8 | 0,86 | 7,0 | 2,1 | 2,0 | 104 | 520 |
Купить АИР250S8 | 37 | 740 | 91,5 | 0,79 | 6,6 | 1,9 | 2,0 | 78 | 465 |
Купить АИР250M8 | 45 | 740 | 92,0 | 0,79 | 6,6 | 1,9 | 2,0 | 94 | 520 |
Купить АИР280S2 | 110 | 2975 | 94,0 | 0,91 | 7,1 | 1,8 | 2,2 | 195 | 650 |
Купить АИР280M2 | 132 | 2975 | 94,5 | 0,91 | 7,1 | 1,8 | 2,2 | 233 | 700 |
Купить АИР280S4 | 110 | 1480 | 94,5 | 0,88 | 6,9 | 2,1 | 2,2 | 201 | 650 |
Купить АИР280M4 | 132 | 1480 | 94,8 | 0,88 | 6,9 | 2,1 | 2,2 | 240 | 700 |
Купить АИР280S6 | 75 | 985 | 93,5 | 0,86 | 6,7 | 2,0 | 2,0 | 142 | 690 |
Купить АИР280M6 | 90 | 985 | 93,8 | 0,86 | 6,7 | 2,0 | 2,0 | 169 | 800 |
Купить АИР280S8 | 55 | 740 | 92,8 | 0,81 | 6,6 | 1,8 | 2,0 | 111 | 690 |
Купить АИР280M8 | 75 | 740 | 93,5 | 0,81 | 6,2 | 1,8 | 2,0 | 150 | 800 |
Купить АИР315S2 | 160 | 2975 | 94,6 | 0,92 | 7,1 | 1,8 | 2,2 | 279 | 1170 |
Купить АИР315M2 | 200 | 2975 | 94,8 | 0,92 | 7,1 | 1,8 | 2,2 | 248 | 1460 |
Купить АИР315МВ2 | 250 | 2975 | 94,8 | 0,92 | 7,1 | 1,8 | 2,2 | 248 | 1460 |
10 типичных проблем с частотными преобразователями
В процессе эксплуатации преобразователя частоты (ПЧ) рано или поздно возникают проблемы, связанные с его корректной работой. Ошибки и сбои могут происходить как при включении (настройке) частотника, так и при его эксплуатации.
При возникновении большинства ошибок преобразователь прекращает работу. Реакцию на некоторые ошибки можно программировать. Например, при возникновении сбоя ПЧ может останавливаться либо продолжать работать, выдав сообщение о неисправности. В некоторых частотных преобразователях существует так называемый «пожарный режим», когда ПЧ работает, несмотря на проблемы, вплоть до поломки и возгорания.
Для начала рассмотрим типичные сообщения об авариях и ошибках ПЧ, которые отображаются на экране пользователя. Отметим, что большинство этих сообщений передаются по каналу связи (если он присутствует) в контроллер и соответствующим образом обрабатываются.
1. Перегрузка по току
Код на дисплее: OC (Over Current). Это сообщение говорит о том, что выходной ток преобразователя частоты превысил допустимое значение. Если данная ошибка появилась при первом пуске ПЧ, необходимо проверить соответствие номинального тока частотника номинальному и реальному току двигателя — возможно, произошло замыкание внутри двигателя. В некоторых типах ПЧ перегрузка OC может разделяться на 3 разных ошибки — перегрузка по току при разгоне, при торможении, при работе на постоянной скорости.
2. Перегрузка
Код на дисплее: OL (Over Load). Данное сообщение связано с предыдущим и в некоторой степени дублирует его. Сообщение OL может высвечиваться из-за срабатывания внутренней электронной тепловой защиты двигателя, либо из-за превышения механической нагрузки на двигатель (превышения момента). Уровень перегрузки устанавливается при настройке частотного преобразователя, причем задаются как уровень тока (в амперах или процентах), так и время реакции в секундах.
3. Превышение напряжения
Код на дисплее: OV (Over Voltage). Это сообщение появляется, когда напряжение на звене постоянного тока превышает допустимый порог. В первую очередь данная ошибка возникает во время торможения, когда электродвигатель входит в режим генерации электроэнергии. Эту проблему можно решить несколькими способами — увеличить время торможения, применить тормозной резистор, отключить торможение (остановка двигателя на свободном выбеге), поднять предельный уровень ограничения перенапряжения при наличии соответствующей возможности.
4. Низкое напряжение
Код на дисплее: LV (Low Voltage). Данное сообщение может появиться, когда напряжение на звене постоянного тока падает ниже установленного порога. Возможные причины: пониженное напряжение в сети, пропадание одной из фаз. К слову, частотный преобразователь может продолжать работать без одной или даже двух фаз, если подключенный двигатель допускает работу на пониженной мощности и отключено обнаружение пропадания фазы.
5. Перегрев ПЧ
Код на дисплее: OH (Over Heat). Это сообщение говорит о том, что температура ПЧ слишком высока. В первую очередь следует проверить исправность внутренних вентиляторов преобразователя и прочистить его сжатым воздухом. Также необходимо проверить отвод тепла от ПЧ, температуру и циркуляцию воздуха внутри электрошкафа. Возможно, потребуется установить дополнительное охлаждение или уменьшить нагрузку.
Мы перечислили лишь основные сообщения о неисправностях. Их число может доходить до нескольких десятков, что позволяет точнее настраивать работу преобразователя и диагностировать неисправности. В различных моделях ПЧ эти сообщения могут индицироваться по-разному, например, в частотнике ProStar PR6000 они выглядят как Er01, Er02, и т.д., но смысл имеют аналогичный.
При ряде неисправностей преобразователей частоты сообщения на экране не выводятся. В основном, это связано с проблемами питания или с фатальными сбоями в работе ПЧ. Кроме того, если существуют проблемы с первоначальным запуском, то есть вероятность ошибки в подключении цепей управления (запуска). Рассмотрим подробнее такие неисправности.
6. Двигатель не запускается
Шаг 1. Проверяем подключение питания и электродвигателя. Шаг 2. Проверяем цепи запуска. В некоторых моделях ПЧ для запуска двигателя необходимо активировать более одного входа, например, «Пуск» и «Вперед», а также вход разрешения работы. Шаг 3. Проверяем способ задания частоты. Проще всего активировать и задать скорость вращения в панели управления, а затем, после устранения проблем, переключиться на задание скорости с внешнего источника.
7. Двигатель вращается в неправильном направлении
Чаще всего в приводах используется «правое» вращение двигателя. Изменить направление вращения можно двумя способами.
Аппаратный способ. Необходимо поменять любые две фазы питания двигателя на выходе ПЧ.
Программный способ. Необходимо изменить направление вращения в соответствующем меню («Forward/Reverse»).
8. Двигатель не вращается с нужной скоростью
Причиной может быть неверное задание частоты, либо слишком большая нагрузка на двигатель (при неправильной уставке защиты). Также существует вероятность неверной установки значений верхней и нижней границ выходной частоты.
9. Проблемы с разгоном и торможением
Если двигатель слишком медленно разгоняется, и время разгона существенно превышает установленное, есть вероятность, что срабатывает функция токоограничения при разгоне. Если же двигатель слишком долго тормозит, то необходимо проверить в меню преобразователя настройки такого параметра, как ограничение перенапряжения, и убедиться в правильности подключения тормозного резистора.
10. Слишком большой ток и температура двигателя
Перегрев электродвигателя является следствием чрезмерной нагрузки на его валу. Следует принять меры по защите двигателя и частотного преобразователя путем настройки соответствующих параметров через меню.
В общем случае при возникновении неисправностей в работе преобразователя частоты следует обратить внимание на температуру двигателя и сообщения на экране, а также обратиться к руководству по эксплуатации.
Неисправности электродвигателей — ООО ПФ «КРЭДО»
Чтобы быстро определить, почему электродвигатель вышел из строя и в каких узлах произошел сбой – рекомендуется ознакомиться с перечнем наиболее популярных неисправностей. Ниже приведены характерные поломки, причины возникновения и способы их правильного устранения.
Неисправность: Электродвигатель сильно гудит при запуске, не набирает оборотов, или не запускается совсем.
Причина: Обрыв цепи статора, обрыв цепи одной из фаз (наконечник, кабель, контактор), перегорела защитная вставка.
Решение: Восстановить цепь питания, проверить и сменить предохранитель.
Причина: Обрыв обмотки статора.
Решение: Перемотать статор.
Причина: Обрыв в цепи фазного ротора (кабель, реостат, щетки).
Решение: Восстановить цепь ротора.
Причина: Нарушение контакта между стержнями и кольцами в короткозамкнутом роторе (дым и искры).
Решение: Ремонт ротора.
Причина: Заклинивание вала ЭД или привода.
Решение: Произвести очистку двигателя или его механизма от возможных загрязнений.
Причина: Низкий пусковой момент, который не позволяет ротору набрать обороты.
Решение: Замена на аналогичный двигатель с большим пусковым моментом.
Причина: Соединение звездой вместо треугольника
Решение: Проверить правильность схемы соединения, произвести переподключение.
Неисправность: Сильный нагрев в подшипниках скольжения.
Причина: Отсутствие или недостаточное количество смазки.
Решение: Произвести смазку подшипников должным образом.
Причина: В масле имеются примеси и механические частицы.
Решение: Произвести замену смазки.
Причина: Износ деталей полумуфт, дефект кольца, бой шейки вала и т.п.
Решение: Ремонт механической части двигателя.
Неисправность: Сильный нагрев в подшипниках качения.
Причина: Отсутствие или недостаточное поступление смазки, избыток смазки.
Решение: Произвести смазку подшипников должным образом, проследить за возможными утечками, убрать излишки смазки.
Причина: Дефекты подшипника, выраженные посторонним шумом.
Решение: Замена подшипника.
Неисправность: Корпус электродвигателя сильно нагревается при работе.
Причина: Слабая работа принудительной системы охлаждения.
Решение: Очистка каналов и технологических отверстий.
Причина: Забиты вентиляционные каналы для пропускания холодного воздуха.
Решение: Продувка сжатым воздухом.
Причина: Повышенная нагрузка по току.
Решение: Понизить нагрузку или заменить на ЭД большей мощности.
Неисправность: Искрение при работе ЭД и появление дыма.
Причина: Ротор соприкасается с поверхностью статора.
Решение: Ремонт двигателя.
Причина: Некорректная работа в защитной или пускорегулирующей системе.
Решение: Диагностика защитной или пускорегулирующей системы и устранение дефектов.
Неисправность: Повышенные вибрации при работе ЭД.
Причина: Износ соединительных муфт
Решение: Отсоединить муфты и проверить ЭД без подключения к механизму.
Причина: Нарушена центровка двигателя и механизма.
Решение: Проверить и затянуть крепежные детали, а также крепления к станине.
Причина: Износ подшипников, разбалансировка ротора, взаимное смещение положения ротора и статора.
Решение: Ремонт ЭД.
Неисправность: Колебания потребления тока статора ЭД в процессе его работы.
Причина: Плохое соединение в цепи — для фазного ротора, для короткозамкнутого ротора — плохое соединение между стержнями и кольцами.
Решение: Ремонт ЭД (при больших колебаниях – незамедлительно, при небольших скачках – чем раньше – тем лучше).
Неисправность: Искры из коллекторно-щеточного узла. Сильный нагрев и обгорание соответствующей арматуры.
Причина: Щетки плохо отшлифованы.
Решение: Отшлифовать щетки.
Причина: Недостаточный зазор для свободного движения щеток в щеткодержателях.
Решение: Выставить допустимый зазор в пределах 0.2-0.3 мм.
Причина: Загрязнение контактных колец или щеток.
Решение: Произвести очистку, устранить источник распространения загрязнения.
Причина: На контактных кольцах имеются борозды и неровности.
Решение: Проточить и произвести шлифовку колец.
Причина: Слабый прижим щеток.
Решение: Отрегулировать усилие нажатия.
Причина: Отсутствует равномерное распределение тока между щетками.
Решение: Отрегулировать усилие нажатие щеток и их свободный ход в щеткодержателях, проверить состояние контактной группы Траверс, оценить состояние токопроводов.
Неисправность: Активная сталь статора перегревается равномерно по всей поверхности.
Причина: Повышенное напряжение питания.
Решение: Организовать дополнительное охлаждение электродвигателя и понизить напряжение электросети до штатного уровня.
Неисправность: Сильный нагрев активной стали статора в отдельном месте на холостом ходу при штатном напряжении в сети.
Причина: Местное КЗ между отдельными листами активной стали.
Решение: Очистить и прошлифовать место соприкосновения листов, покрыть их диэлектрическим лаком.
Причина: Нарушена изоляция в местах стяжки активной стали.
Решение: Восстановить изоляцию на данных участках.
Неисправность: ЭД с фазным ротором при загрузке не выходит на номинальные обороты.
Причина: Некачественное соединение в пайке контактного кольца ротора.
Решение: Произвести контроль надежности пайки визуально и «проверкой с падением напряжения».
Причина: Слабый контакт обмотки ротора с контактным кольцом.
Решение: Проверить и восстановить токопроводящие соединения.
Причина: Слабое соединение в щеточном узле и механизме КЗ ротора.
Решение: Произвести шлифовку и регулировку усилия прижатия щеток.
Причина: Слабое соединение контактных проводов в пусковой аппаратуре.
Решение: Восстановить целостность и надежность контактов на соответствующем участке.
Неисправность: Двигатель с фазным ротором запускается при незамкнутой цепи ротора, а под нагрузкой не может выйти на номинальный режим.
Причина: КЗ в обмотке якоря, соединительных хомутах лобовых соединений.
Решение: Изолировать соприкасающиеся хомуты, Устранить КЗ и произвести замену поврежденной обмотки якоря.
Причина: КЗ обмотки ротора по двум участкам одновременно.
Решение: Устранить КЗ и произвести замену обмотки неисправной катушки.
Неисправность: Двигатель с короткозамкнутым ротором не набирает штатное количество оборотов.
Причина: Отработало тепловое реле, вышли из строя предохранители или автомат.
Решение: Проверка и устранение данных неисправностей.
Неисправность: При запуске электродвигателя электрическая дуга перекрывает контактные кольца.
Причина: В щеточном узле или на контактных кольцах присутствует пыль, грязь.
Решение: Провести чистку.
Причина: Высокая влажность в месте эксплуатации ЭД.
Решение: Нанести дополнительный слой диэлектрика или произвести замену ЭД на другой, пригодный для эксплуатации в текущих условиях.
Причина: Обрыв в контактных соединениях реостата или ротора.
Решение: Провести диагностику всех соединений, устранить неисправности.
Почему греется электродвигатель и способы устранения нагрева. Причины перегрева электродвигателя и способы их устранения Способы эксплуатации приводящие к неисправности электродвигателей
В процессе эксплуатации электродвигатель может начать греться. Отнестись к этой проблеме следует с повышенным вниманием, так как изоляция обмотки не выносит высоких температур. В большинстве случаев она рассчитана для нормальной повседневной работы в пределах 90-95ºС. Некоторые двигатели созданы с применением обмотки, для которой критической является температура в 130ºС. Если в процессе эксплуатации возникнут аварийные перегрузки, либо технологические неисправности, то двигатель начине греться, а изоляция обмотки выйдет в результате этого из строя. Следующей стадией развития ситуации наверняка будет короткое замыкание, которое приведет к необходимости дорогого ремонта. Чтобы этого не произошло необходимо выяснить, почему греется и устранить причины. В большинстве случаев это менее затратно, чем заказывать перемотку или покупать новый мотор. Основные причины перегрева двигателяПричины, по которым может перегреваться двигатель, могут лежать в самых разных плоскостях. К основным из них относятся:
- неисправности линии подачи электрического тока;
- износ щеток электродвигателя;
- перекос вала;
- износ подшипников или плохая их смазка;
- неисправность вентилятора, охлаждающего двигатель.
Выяснить, почему греется электродвигатель, можно включив его без нагрузки. Но перед этим стоит изучить паспорт мотора, в котором указана максимальная нагрузка. Если она не соответствует фактической, то стоит попытаться уменьшить объемы выполняемых работ силовым агрегатом. Когда подключенный без нагрузки двигатель работает идеально, то дело только в неправильных технологических процессах. В том случае, если мотор греется без нагрузки, то причины наверняка внутри силового агрегата. Некоторые из них устранить достаточно просто, например, если все дело в вентиляторе, охлаждающем ротор. Он может забиться пылью и достаточно очистить его, что бы температурный режим работы вновь стал нормальным. Основные способы устранения нагрева двигателяВыяснив причину нагрева двигателя — обязательно следует устранить неисправность. В противоположном случае срок эксплуатации двигателя может быть снижен в несколько раз. Наиболее часто используются такие способы устранения нагрева электродвигателей, как смазка подшипника, стабилизация напряжения в сети, питающей силовой агрегат, удаление пыли и грязи с поверхности обмотки. Если выровнять напряжение не удается, то следует снизить нагрузку на двигатель. Нормальная работа мотора возможно лишь в том случае, если напряжение будет не менее 80% от номинального. Более сложные причины нагрева мотора устраняются в специализированных мастерских, где чистят щетки или производят их замену, делают новую обмотку двигателя. Что же делать, если греется подшипник электродвигателя? Для нормальной работы необходимо обязательно позаботиться, что бы он содержался в чистоте. Следует убедиться, чтобы крышки подшипников были плотно закрыты. Если они открылись из-за сильной вибрации, то в них наверняка попала пыль, грязь или мусор. Для дальнейшей эксплуатации подшипника требуется удалить загрязненную смазку, тщательно промыть деталь керосином, продуть сжатым воздухом. После этого необходимо наполнить подшипник смазкой — той, которая соответствует скорости работы двигателя. Добавляется она небольшими порциями с помощью специальных приспособлений. Переусердствовать с количеством смазки нельзя, так как скольжение в этом случае будет затруднено и электродвигатель вновь будет испытывать повышенную нагрузку.
Все мы знаем, что механическое движение в электроустройствах разного назначения обеспечивается электродвигателем. Но при длительной работе в режиме повышенных нагрузок они начинают греться, что может привести к перегреву и поломке устройства. Поэтому, перед его эксплуатацией необходимо очень внимательно прочитать инструкцию.
Нередко приходится ремонтировать электроприборы и производить замену в них электродвигателя. Некоторые умельцы создают собственные электромеханические устройства, в состав которых входит электродвигатель. При монтаже системы водоснабжения также используются насосы, движущей силой, в которых есть электромоторы. Во время эксплуатации, при замене и установке мотора важно знать, почему происходит его нагревание, как подобрать такое устройство, чтобы увеличить период использования электроприбора в целом и снизить риск его поломки.
Итак, почему греется электродвигатель и как не допустить его перегрева?
Относиться к проблеме нагрева двигателя нужно с особым вниманием, ведь изоляция его обмотки имеет слабое сопротивление повышенным температурам. Зачастую нормой является температура, в пределах 90-95 ºС. Существуют электромоторы обмотка, в которых рассчитана на максимальную температуру в 130 ºС.
Но в любом случае, во время эксплуатации могут возникать аварийные перегрузки или технологические неисправности, которые приводят к нагреву, являющемуся причиной выхода из строя изоляции. После чего зачастую происходит короткое замыкание. В результате, для восстановления работоспособности устройства, потребуется дорогостоящий ремонт двигателя или его полная замена. Менее затратным будет выяснить причину нагрева электромотора и устранить ее, нежели покупать новый двигатель или заказывать его перемотку.
Зачастую причиной перегрева двигателя является:
— неисправность линий электропередач;
— повышенные рабочие нагрузки;
— износ щеток электромотора;
— перекос вала;
— плохая смазка и повышенный износ подшипников;
— выход из строя или малоэффективная работа охлаждающего двигатель устройства (вентилятора).
Выяснить причину нагрева мотора можно, если включить его без нагрузки. Но предварительно необходимо изучить паспорт этого прибора, в котором отражена информация о максимальной нагрузке.
В том случае, если она больше фактической, нужно вначале снизить объемы выполняемых агрегатом работ.
О неправильности технологического монтажа свидетельствует идеальная работа двигателя без нагрузки. Но если он без нагрузки греется, то причины кроются внутри этого агрегата.
Многие из них, устранить не составит труда, например, если причиной повышения температуры есть неработающий вентилятор охлаждения. Он может быть плохо смазан или забит пылью, и чтобы восстановить нормальный режим его работы требуется всего лишь смазать или очистить от пыли вентилятор.
Независимо от того, что послужило причиной повышения температуры электромотора, эту неисправность необходимо устранить и как можно скорее. Так как дальнейшая эксплуатация двигателя может привести к более серьезным проблемам, его эксплуатационный ресурс снизится в несколько раз.
Чаще всего проблема повышенной температуры электродвигателя решается путем смазки подшипника, стабилизации напряжения в электросети, которая питает тот или иной силовой агрегат, удаление грязи и пыли с поверхностей обмотки. В том случае если не получается произв
Почему греется 3 фазный двигатель подключение треугольником. Почему греется электродвигатель и способы устранения нагрева
В статье приведены неисправности электродвигателей, появляющиеся при их эксплуатации и приводящие к выходу электродвигателей из строя
Введение
Когда электрический ток протекает через проводник — то проводник нагревается. Поэтому электродвигаетль при работе нагревается. Конструкцию электродвигателя рассчитано таким образом, что если через обмотки будет протекать ток не больше номинального — то такой электродвигатель будет работать при температуре окружающей среды согласно климатическому исполнению электродвигателя и . Номинальный ток указан на
А вот если ток через обмотки двигателя по каким-то причинам увеличится — то электродвигатель начнет перегреваться, и если этот процесс не остановить — то в дальнейшем электромотор выйдет из строя. В обмотках из-за перегрева начинает плавиться изоляция проводников (обычно это специальный лак) и произойдет короткое замыкание проводников.
Ниже рассмотрим возможные способы увеличения тока через обмотки электродвигателя.
Способы эксплуатации приводящие к неисправности электродвигателей
Способ 1. Перегрузка электродвигателя.
Это самый распространенный способ. При отсутствии защиты перегрузить электродвигатель: остановить или существенно затормозить вращающийся вал электродвигателя. Каким способом? В зависимости от механизма. Для пилорамы, например, быстро пустить на пилу толстое бревно с сучьями, для консольного насоса — на вход насоса в перекачиваемую жидкость подать инородное тело, например (волокнистых материалов, окалину после сварки отопительных труб).
Важное отступление для электродвигателей погружных насосов и вентиляторов!
Глубинные насосы, вентиляторы при некоторых условиях эксплуатации достаточно включить с открытым выходом (а для вентилятора — с открытым входом), чтобы перегрузить двигатель. По инструкции запуск насоса или вентилятора должен происходить при закрытой задвижке (вентиле) на выходе насоса или закрытом шибере на входе вентилятора. После пуска агрегата задвижка или шибер открываются одновременно с измерением тока потребления электродвигателя. Постепенно открытием задвижки или шибера значение тока доводится до номинального и при этом задвижка или шибер фиксируется. Дальнейшее открытие задвижки или шибера выводит электродвигатель в режим перегрузки. Но кто же так сложно делает — лучше сразу выбросить задвижку или шибер из схемы (что сэкономит средства) и включить агрегат напрямую. Результат не заставит долго ждать — глубинный насос может проработать и месяц, дренажный — минут 20, вентилятор — как повезет: если на выходе вентилятора есть сопротивление воздуху (узкие воздуховоды, например, или куча зерна при просушке) — работать может долго, но если сопротивление воздуху падает — двигатель быстренько переходит в перегрузку и выходит из строя.
Способ 2. Отсутствие фазы или перекос фаз.
Запустить электродвигатель на двух фазах или при работе электромотора оторвать (отломать) или отключить провод с одной фазой. На двух фазах электродвигатель может работать — но недолго, т.к. при этом через обмотки, на которые подается напряжение, течет повышенный ток (ток через обмотку увеличивается до 50%).
Способ 3. Ошибки подключения.
Неправильно подключить обмотки электродвигателя. Обычно на бирке электродвигателя указан способ подключения обмоток для напряжений. Например Δ/Υ 220/380 — «треугольником» на 220В, «звездой» 380В. Если для такого электродвигателя соединить обмотки «треугольником» и включить их в 380В — то двигатель заработает, но на недолго. Через обмотки потечет ток в 1,7 раза больший, чем для такой же нагрузки по схеме «звезда», и через некоторое время электродвигатель перегреется и сгорит.
Способ 4. Ошибки монтажа.
При насадке на вал полумуфты или шкива не надо обеспечивать упор для вала с противоположной стороны (часто ведь при этом надо снимать с двигателя защитный кожух вентилятора — но кто же так делает, вдруг и так сойдет). Также при монтаже надо наносить мощные удары при насадке шкива или полумуфты. Сочетание этих действий почти гарантировано приведет к повреждению подшипников или задней крышки электродвигателя (особенно, если крышка чугунная). А треснутая крышка или поврежденный подшипник не выдержат нагрузок во время эксплуатации двигателя и будут причиной выхода двигателя из строя.
Важное доплнение! Главным условием надежного выхода из строя электродвигателя является отсутствие защиты электродвигателя или несоответствие устройств защиты электрическим параметрам электродвигателя. Электродвигатель защищают или или специализированным устройствм для защиты электродвигателей.
Следует отметить, что защита электродвигателя — это лишние затраты (10-40% от стоимости двигателя). Поэтому если вы намерены обновлять электродвигатели у себя как можно чаще — то экономьте средства на защите.
Способ 5. Недопустимые условия эксплуатации.
Сергей Союк, занимающийся перемоткой электродвигателей, из своего опыта указал еще две причины выхода из строя электродвигателей при их эксплуатации: попадание воды внутрь электродвигателя и разбалансировка привода или детали, прикрепленного к валу двигателя.
5.1. Попадание воды внутрь электродвигателя.
На бирке электродвигателя указывается электродвигателя от пыли и воды. Наиболее часто это IP54 или IP55. Первая цифра — защита от твердых объектов. Вторая цифра — защита от жидкостей: 4 – от водных брызг со всех сторон; 5 – от водных струй. Однако если полить электромотор водой из шланга или оставить его под дождем — то вода может попасть внутрь электродвигателя (по проводам через клеммную коробку, например) и это приведет к выходу электродвигателя из строя.
5.2. Разбалансировка привода или детали, прикрепленного к валу двигателя.
Например, нарушение балансировки рабочего колеса вентилятора приводит к поперечным биениям вала электродвигателя, что в конечном итоге приведет к разрушению подшипника и подшипникового щита. Поэтому вентилятор можно и не чистить, пусть на крыльчатку налипает грязь — и через некоторое время мотор сам выйдет из строя. Кстати, для «перекачки» воздуха с большим содержанием пыли (до 1 кг на кубический метр) есть специальные пылевые вентиляторы с радиальными лопатками
.
От себя добавлю еще один способ.
5.3. Перегрев электродвигателя при регулировании его оборотов.
При уменьшении оборотов электродвигателя с помощью частотного преобразователя уменьшается поток воздуха для охлаждения электродвигателя от крыльчатки, размещенной на другом конце вала. Помним, что при уменьшении оборотов крыльчатки в 2 раза производительность вентилятора уменьшается в 2 раза, а давление — в 4. Поэтому мотор при понижении частоты вращения охлаждается хуже и, следовательно, быстрее перегревается.
Если Вам известны еще способы вывода электродвигателей из строя — пишите нам и об вашем опыте узнает весь мир.
Подпишитесь на нашу рассылку
и получайте уведомления о новых статьях на электронную почту.
Благодарим Вас за подписку
Что-то пошло не так
Мы уважаем вашу конфиденциальность и мы принимаем соответсвующие меры по защите данных
Неисправности электродвигателей — узнайте почему электродвигатель выходит из строя?
Александр Коваль
62 комментария
В процессе эксплуатации электродвигатель может начать греться. Отнестись к этой проблеме следует с повышенным вниманием, так как изоляция обмотки не выносит высоких температур. В большинстве случаев она рассчитана для нормальной повседневной работы в пределах 90-95ºС. Некоторые двигатели созданы с применением обмотки, д
5 причин, по которым ваши электродвигатели продолжают перегреваться
Перегретый электродвигатель приведет к остановке вашего оборудования. И хотя чрезмерный нагрев может быть проблемой, с которой вы сталкиваетесь, необходимо знать, как и почему ваш двигатель перегревается. Пока вы не доберетесь до корня проблемы, ваш двигатель будет продолжать достигать пиковых температур, снова и снова выходя из строя.
Квалификация перегретого электродвигателя
Первый шаг в работе с перегретым двигателем — убедиться, что перегрев действительно является проблемой.Если вы не будете активно следить за ним, когда он выходит из строя, вы можете не подозревать о нагреве. Чтобы проверить перегрев, вам нужно будет снова запустить двигатель — на этот раз с помощью методов контроля:
- Проверьте кнопку сброса температуры на вашем двигателе, если она есть. Это самый быстрый и простой способ квалифицировать перегрев.
- Простой термостат ясно покажет, что температура поднимается выше безопасного уровня эксплуатации.
- Если у вас под рукой передовая инфракрасная камера (FLIR), она быстро покажет, когда машина достигает температуры перегрузки.
- Хотите высокотехнологичное решение? Умные датчики температуры будут делать больше, чем просто сообщать вам о перегреве — они точно определяют, когда это произошло и при какой температуре.
Любой из этих методов квалифицирует перегрев, поэтому вы можете быть уверены, что именно с этим вы имеете дело. После подтверждения вам нужно будет понять , почему ваш электродвигатель продолжает превышать безопасные рабочие температуры.
Общие проблемы, приводящие к перегреву
Как и в случае с любой другой электрической системой, тепло является результатом плохих условий эксплуатации.В случае электродвигателей перегрев чаще всего связан с одной из следующих пяти основных проблем:
1. Электрическая перегрузка , вызванная чрезмерным напряжением питания или перегрузкой из-за потребления большего тока, приведет к проблемам с перегревом. По мере того, как двигатель работает интенсивнее или при необычной нагрузке, основным побочным продуктом, ведущим к отказу, будет нагрев.
2. Низкое сопротивление является наиболее частой причиной отказа электродвигателя. Деградация обмоток двигателя из-за тепла откроет путь к коротким замыканиям и утечкам, которые подвергают двигатель риску выхода из строя.
3. Загрязнение пылью и мусором повысит внутреннюю температуру двигателя и не даст ему остыть, что приведет к чрезмерному нагреву в течение более длительного периода времени. Обычно это происходит без надлежащего обслуживания или удаления частиц.
4. Частота пуска-останова играет большую роль в тепловом повреждении. Чрезмерный запуск, остановка и повторный запуск двигателя не позволят ему остыть должным образом. В результате создается высокотемпературная среда, которая нарушает целостность компонентов.
5. Вибрация из-за состояния мягкой ступни приводит к чрезмерному нагреванию. Если вибрации достаточно сильны, они поднимут температуру до опасного уровня и нагружают компоненты, превышающие их тепловую способность.
Большинство техников-электриков могут обнаружить такие катализаторы, вызывающие нагрев, при разборке или осмотре двигателя.
Предотвращение отказов из-за перегрева
Проблема с отказами, вызванными нагревом, заключается в том, что они будут происходить до тех пор, пока техническое обслуживание не решит основную проблему.К счастью, есть способы решить эти проблемы в зародыше без особых изменений в плане обслуживания:
- Тщательное плановое обслуживание гарантирует, что отдельные компоненты электрической системы получат необходимое внимание, чтобы свести к минимуму перегрузку и перегрев. Установка интеллектуального датчика
- может предупреждать технических специалистов о проблемах, связанных с нагревом, в режиме реального времени, позволяя вносить исправления и модификации до того, как произойдет полная поломка.
- Установка предохранителей от перегрузки и правильная конфигурация предотвратят проблемы с нагрузкой, напрямую устраняя несколько катализаторов повреждения головки.
Наряду с трением в механическом оборудовании, тепло является отравой для электрических устройств любого предприятия. Контроль температуры начинается с понимания того, что ее вызывает, и того, что вы можете сделать, чтобы минимизировать или устранить эти переменные.
Проблемы с перегревом электродвигателя? Вы всегда можете рассчитывать на профессионалов Global Electronic Services. Свяжитесь с нами по всем вопросам, касающимся промышленной электроники, серводвигателей, двигателей переменного и постоянного тока, гидравлических и пневматических систем — и не забывайте ставить лайки и подписываться на нас на Facebook!Запросить цену
Что вызывает перегрев электродвигателей?
Одна из самых серьезных угроз для электродвигателей — перегрев.Чрезмерный нагрев может привести к преждевременной потере изоляции обмотки двигателя, что приведет к его возгоранию. Если двигатель перегревается, есть большая вероятность, что его потребуется полностью заменить, а не ремонтировать, чтобы восстановить работу машины, от которой он питается. Чтобы не сократить срок службы используемых вами машин, убедитесь, что электродвигатели не страдают от следующих условий, которые являются наиболее распространенными причинами перегрева электродвигателей.
Проблемы окружающей среды
Важно, чтобы среда, в которой вы работаете с двигателем, не содержала чрезмерных химикатов, которые могут быть абразивными для деталей двигателя.Однако важно знать общие условия, в которых работает двигатель. Избыточное нагревание, влажность или работа на большой высоте могут увеличить вероятность перегрева.
Повторяющееся включение и выключение
Для большинства двигателей установлены определенные стандарты относительно того, как часто следует нажимать переключатель включения / выключения. Превышение этих рекомендаций может вызвать значительную нагрузку на двигатель, что может привести к его перегреву.
Перегрузка
Во избежание чрезмерного нагрева, вызванного сильным током, крайне важно, чтобы вы хорошо знали уровень рабочей нагрузки вашего двигателя.Хотя идеальные условия напряжения редко встречаются во многих промышленных приложениях, точные расчеты нагрузки обеспечат надежное измерение напряжения. Перегрев может вызвать серьезное повреждение обмотки и подшипников.
Засоренные вентиляционные отверстия
К сожалению, одна из наиболее частых причин перегрева также является одной из самых предотвратимых. Обязательно проверяйте воздуховоды и вентиляционные отверстия машины перед каждым использованием, чтобы убедиться, что они не забиты. Забитые воздуховоды задерживают тепло и не позволяют свежему воздуху поддерживать охлаждение двигателя.
Перегрев электродвигателей может привести к ряду проблем, в том числе к полному отказу двигателя. Если у вас возникли проблемы с температурой электродвигателя, позвоните техническим специалистам в Industrial Motors & Machining. Наша команда экспертов по ремонту электродвигателей Denver сможет своевременно диагностировать и устранить проблему. Позвоните сегодня по телефону (303) 872-5981, чтобы запланировать запрос на услуги по ремонту электродвигателей!
Блог Industrial Motors & Machining
Написано и опубликовано MORBiZ
Перегрев электродвигателей: основная причина отказа
Интерактивные технологии позволяют проводить оценку всей системы двигателя для облегчения поиска и устранения неисправностей.
Специалисты по техническому обслуживаниюсходятся во мнении, что чрезмерное нагревание вызывает быстрое ухудшение изоляции обмотки двигателя. Общее правило гласит, что срок службы изоляции сокращается вдвое на каждые 10 ° C дополнительного нагрева обмоток. Например, если двигатель, который обычно прослужит 20 лет при регулярной эксплуатации, работает при температуре на 40 ° C выше номинальной, срок службы двигателя составит около 1 года.
Ведущие организации по стандартизации пришли к выводу, что 30 процентов отказов электродвигателей связаны с повреждением изоляции, а 60 процентов — с перегревом.Опубликованы статьи, в которых говорится, что серьезной причиной износа подшипников является перегрев.
Обычно существует пять основных причин перегрева — перегрузка, плохое питание, высокий коэффициент полезного действия, частые остановки и запуски и экологические причины.
Условия перегрузки
Ток статора часто используется для измерения уровня нагрузки, но уровень нагрузки можно легко замаскировать из-за состояния перенапряжения. Распространенная ошибка делается при работе с перенапряжением, чтобы уменьшить ток статора и уменьшить выделение тепла.Было показано, что для двигателей мощностью от 10 до 200 л.с., работающие при 10-процентном перенапряжении, обычно уменьшают потери только на 1-3 процента.
Даже если ток двигателя может изменяться при приложении перенапряжения, чрезмерное разрушающее тепло в двигателе не улучшится. Погрешность нагрузки более 10 процентов может быть получена, если полагаться на показания тока статора для определения вероятных уровней нагрузки и нагрева. В условиях полной нагрузки это разница между жизнью и смертью двигателя.
Например, на угольной электростанции в США двигатель мощностью 6,6 кВ мощностью 7000 л.с. работал с перегрузкой по току всего на 7 процентов, но с перенапряжением на 8 процентов. Два идентичных приложения подверглись внеплановым отключениям за предыдущие 12 месяцев. Небольшая перегрузка была выявлена путем проверки тока статора этого двигателя. Однако, посмотрев на истинную нагрузку на двигатель, была обнаружена почти 20-процентная перегрузка. Это объясняет, почему эти двигатели вышли из строя. Ремонт каждого из этих трех двигателей обошелся в сотни тысяч долларов.
В промышленных приложениях условия идеального напряжения встречаются редко. Истинным источником тепла являются не только текущие уровни, но и потери. Эти потери являются разрушающим фактором для обмоток и серьезной причиной повреждения подшипников.
Это оправдывает необходимость точного знания уровня рабочей нагрузки. Только точные расчеты уровня нагрузки могут дать надежные измерения чрезмерных потерь и перегрева в двигателе.
Состояние питания
Электродвигатели на заводах-изготовителях обычно нуждаются в снижении номинальных характеристик из-за плохих условий подачи электроэнергии, чтобы максимально продлить срок их службы.Разделы II и IV NEMA MG-1 определяют, какое качество напряжения в зависимости от баланса и искажений допускает какой уровень процентной нагрузки. На рис. 1 показана кривая снижения номинальных характеристик NEMA для процента дисбаланса. Согласно кривой снижения характеристик, чем выше уровень дисбаланса, тем ниже приемлемый уровень установившейся нагрузки. Например, если двигатель мощностью 100 л.с. имеет коэффициент дисбаланса 3 процента, мощность двигателя следует снизить до 0,88 или 88 процентов от мощности, 88 л.с.
Частое использование частотно-регулируемых приводов (ЧРП) может привести к пагубным последствиям для электродвигателей из-за отсутствия электроэнергии на производственных предприятиях.На рис. 2 показано напряжение, которое ЧРП, работающий в почти 6-пульсном режиме, подаст на двигатель. Искаженные токи — это реакция двигателя на плохое питание. Налицо серьезные искажения. В этом сценарии показано снижение номинальных характеристик по NEMA на 0,7, что позволяет двигателю работать с выходной мощностью только 70 процентов.
Эффективный коэффициент обслуживания
Ключом к обнаружению наиболее частых причин перегрева является точность оценки уровня нагрузки. Это можно определить, взглянув только на токи и напряжения.Формула для расчета эффективного коэффициента обслуживания:
Эффективный коэффициент обслуживания дает специалистам по профилактическому обслуживанию твердый вывод о нагрузке на любое конкретное приложение нагрузки двигателя.
В другом примере данные, собранные с помощью динамометра, показали, что тестируемый двигатель мощностью 300 л.с. работал почти с полной нагрузкой, 99,7 процента. Искажения напряжения были плохими из-за ранее не идентифицированного дефекта выпрямителя кремниевого контроллера в блоке питания. Результирующий коэффициент снижения номинальных характеристик NEMA равен 0.85 приводит к эффективному коэффициенту обслуживания 1,17, который сигнализирует о состоянии тревоги.
Независимо от эксплуатационного коэффициента, указанного на паспортной табличке, любой двигатель с рабочим коэффициентом выше 1,0 находится под нагрузкой. Более высокий коэффициент обслуживания означает способность двигателя к перегрузке в течение коротких периодов времени, а не более высокие рабочие характеристики в установившемся режиме. Условия низкого напряжения являются частыми и могут быть вызваны множеством причин. NEMA указывает, какой уровень нагрузки разрешен для условий низкого напряжения. Инструменты онлайн-мониторинга, способные точно рассчитать рабочую нагрузку, обеспечивают работу установки в соответствующих пределах.
Частые пуски и остановки
В таблице 1 показано максимальное количество пусков и остановок для двигателей с сетевым приводом в зависимости от их номинальных значений и скорости. Очень важно ограничить частоту пуска, наиболее напряженную часть работы двигателя.
Многие хорошо задокументированные случаи повторяющихся отказов двигателя были устранены путем увеличения номинальной мощности двигателя, что сократило время наработки на отказ. Однако основной причиной сбоя на самом деле была частота пусков и остановок.Главное — внимательно следить за количеством пусков — ежечасно для малых или средних двигателей и ежедневно для более крупных двигателей.
Онлайн-тестирование может гарантировать полное соответствие профессиональным стандартам. Его можно использовать для выявления причин сбоев в операциях, не соответствующих стандартам, путем включения этих стандартов в операции долгосрочного неконтролируемого мониторинга.
Условия окружающей среды
Термография часто используется для определения условий, в которых используются электродвигатели.Плохое охлаждение из-за высокой температуры окружающей среды, засорения воздуховодов и т. Д. Являются типичными примерами неэлектрической температурной нагрузки как на двигатель, так и на систему изоляции. Химические абразивные вещества в воздухе, влажная эксплуатация и работа на большой высоте — вот несколько общих факторов воздействия окружающей среды.
Испытания в соответствии со стандартами
Отказ подшипников и обмоток — наиболее частые отказы двигателей. Основная причина обычно — чрезмерная жара. Практика профилактического обслуживания часто ограничивает электрические измерения в режиме онлайн интерпретацией уровней тока.Хотя этот метод важен, он не дает результатов при выявлении отказов, вызванных чрезмерным нагревом обмотки. Лучший способ обеспечить успешное профилактическое обслуживание и мониторинг — это тестирование в соответствии с NEMA и другими профессиональными стандартами. Автоматическая оценка необходима для эффективного обеспечения состояния моторики. MT
Эрнесто Дж. Виденбруг, доктор философии, инженер-исследователь в компании Baker Instrument Co., 4812 McMurry Ave., Fort Collins, CO 80525; телефон (970) 282-1200.
Фиг.1. Кривая снижения номинальных характеристик NEMA. Этот показатель также определяется формулой.
вернуться к артикулу
Рис. 2. Крайние искажения при медленном переключении частотно-регулируемого привода (50 л.с., 4-полюсный)
вернуться к артикулу
Таблица 1. Максимальное количество пусков и остановов для сетевых двигателей в зависимости от их номинальных значений и скорости.
л.с. | 2-полюсный | 4 полюса | 6-полюсный | |||
А | К | А | К | А | К | |
1 | 15 | 75 | 30 | 38 | 34 | 33 |
5 | 8.1 | 83 | 16,3 | 42 | 18,4 | 37 |
10 | 6,2 | 92 | 12,5 | 46 | 14,2 | 41 |
15 | 5,4 | 100 | 10.7 | 46 | 12,1 | 44 |
20 | 4,8 | 100 | 9,6 | 55 | 10,9 | 48 |
50 | 3,4 | 145 | 6,8 | 72 | 7.7 | 64 |
75 | 2,9 | 180 | 5,8 | 90 | 6,6 | 79 |
100 | 2,6 | 220 | 5,2 | 110 | 5,9 | 97 |
200 | 2 | 600 | 4 | 300 | 4.8 | 268 |
250 | 1,8 | 1000 | 3,7 | 500 | 4,2 | 440 |
A = Максимальное количество пусков в час
C = Минимальное время отдыха или выключения в секундах между пусками
вернуться к артикулу
История электромобилей
Представленные более 100 лет назад, электромобили сегодня набирают популярность по многим из тех же причин, по которым они были популярны вначале.
Будь то гибрид, подключаемый гибрид или полностью электрический, спрос на автомобили с электроприводом будет продолжать расти, поскольку цены падают, а потребители ищут способы сэкономить деньги на насосе. Согласно отчету Navigant Research, в настоящее время более 3 процентов продаж новых автомобилей во всем мире могут вырасти почти до 7 процентов, или 6,6 миллиона в год, к 2020 году.
В связи с растущим интересом к электромобилям мы смотрим, где эта технология была и где она развивается.Отправляйтесь в прошлое вместе с нами, исследуя историю электромобиля.
Рождение электромобиля
Трудно отнести изобретение электрического автомобиля к одному изобретателю или стране. Вместо этого это была серия прорывов — от батареи до электродвигателя — в 1800-х годах, которые привели к появлению первого электромобиля на дороге.
В начале века новаторы в Венгрии, Нидерландах и Соединенных Штатах, в том числе кузнец из Вермонта, начали разрабатывать концепцию автомобиля с батарейным питанием и создали одни из первых небольших электромобилей. машины.И хотя британский изобретатель Роберт Андерсон примерно в это же время разработал первый примитивный электромобиль, французские и английские изобретатели построили одни из первых практических электромобилей только во второй половине XIX века.
Здесь, в США, первый успешный электромобиль дебютировал около 1890 года благодаря Уильяму Моррисону, химику, жившему в Де-Мойне, штат Айова. Его шестиместный автомобиль, способный развивать максимальную скорость 14 миль в час, был немногим больше, чем электрифицированный фургон, но он помог пробудить интерес к электромобилям.
В течение следующих нескольких лет в США начали появляться электромобили от различных автопроизводителей. Парк Нью-Йорка даже насчитывал более 60 электрических такси. К 1900 году электромобили достигли своего расцвета, составляя около трети всех транспортных средств на дорогах. В течение следующих 10 лет они продолжали демонстрировать высокие продажи.
Ранний взлет и падение электромобиля
Чтобы понять популярность электромобилей примерно в 1900 году, также важно понимать развитие личного автомобиля и других доступных опций.На рубеже 20-го века лошадь все еще была основным средством передвижения. Но когда американцы стали более зажиточными, они обратились к недавно изобретенному автомобилю — доступному в паровой, бензиновой или электрической версиях — для передвижения.
Пар был проверенным и надежным источником энергии, доказавшим свою надежность для питания заводов и поездов. Некоторые из первых самоходных машин в конце 1700-х годов работали на пару; тем не менее, только в 1870-х годах технология закрепилась в автомобилях.Отчасти это связано с тем, что пар был не очень практичным для личных автомобилей. Паровозам требовалось длительное время запуска — иногда до 45 минут на морозе — и их нужно было доливать водой, что ограничивало их диапазон.
С появлением электромобилей на рынке появился новый тип транспортных средств — автомобили с бензиновым двигателем — благодаря усовершенствованиям двигателя внутреннего сгорания в 1800-х годах. Хотя бензиновые автомобили были многообещающими, они не были лишены недостатков. Для управления ими требовалось много ручного труда — переключение передач было непростой задачей, и их нужно было запускать с помощью рукоятки, что усложняло работу некоторых.К тому же они были шумными, и их выхлоп был неприятным.
Электромобили не имели проблем, связанных с паром или бензином. Они были тихими, удобными в управлении и не выделяли вонючего загрязнителя, как другие автомобили того времени. Электромобили быстро стали популярны у городских жителей, особенно у женщин. Они идеально подходили для коротких поездок по городу, а плохие дорожные условия за пределами города означали, что немногие автомобили любого типа могли отправиться дальше. По мере того как в 1910-е годы все больше людей получали доступ к электричеству, стало легче заряжать электромобили, что повысило их популярность среди всех слоев общества (включая некоторых из «самых известных и выдающихся производителей бензиновых автомобилей», как 1911 New York Times статьи).
Многие новаторы в то время обратили внимание на высокий спрос на электромобили, исследуя способы улучшения технологии. Например, Фердинанд Порше, основатель одноименной компании по производству спортивных автомобилей, в 1898 году разработал электромобиль под названием P1. Примерно в то же время он создал первый в мире гибридный электромобиль — автомобиль, работающий от электричества и газовый двигатель. Томас Эдисон, один из самых плодовитых изобретателей в мире, считал, что электромобили являются передовой технологией, и работал над созданием более совершенной батареи для электромобилей.Даже Генри Форд, друживший с Эдисоном, в 1914 году сотрудничал с Эдисоном, чтобы изучить варианты недорогого электромобиля, согласно Wired .
Тем не менее, именно серийная модель T Генри Форда нанесла удар по электромобилю. Представленная в 1908 году модель T сделала автомобили с бензиновым двигателем широко доступными и доступными. К 1912 году бензиновый автомобиль стоил всего 650 долларов, а электрический родстер продавался за 1750 долларов. В том же году Чарльз Кеттеринг представил электрический стартер, устраняющий необходимость в ручном заводе и увеличивший продажи автомобилей с бензиновым двигателем.
Другие события также способствовали упадку электромобилей. К 1920-м годам в США была лучшая система дорог, соединяющих города, и американцы хотели выбраться и исследовать территорию. С открытием техасской сырой нефти газ стал дешевым и легкодоступным для сельских жителей Америки, и по всей стране начали появляться заправочные станции. Для сравнения: в то время очень немногие американцы за пределами городов имели электричество. В конце концов, к 1935 году электромобили практически исчезли.
Нехватка газа пробуждает интерес к электромобилям
В следующие 30 лет или около того электромобили вступили в своего рода темные века с небольшим прогрессом в технологиях. Дешевый бензин в больших количествах и постоянное совершенствование двигателей внутреннего сгорания сдерживали спрос на автомобили на альтернативном топливе.
Перенесемся в конец 1960-х — начало 1970-х годов. Стремительный рост цен на нефть и нехватка бензина, пик которых пришелся на арабское нефтяное эмбарго 1973 года, вызвали растущий интерес к снижению U.Зависимость С. от иностранной нефти и поиск местных источников топлива. Конгресс принял к сведению и принял Закон об исследованиях, разработках и демонстрациях электрических и гибридных транспортных средств от 1976 года, уполномочивающий Министерство энергетики поддерживать исследования и разработки в области электрических и гибридных транспортных средств.
Примерно в то же время многие крупные и мелкие автопроизводители начали изучать варианты транспортных средств, работающих на альтернативном топливе, включая электромобили. Например, General Motors разработала прототип городского электромобиля, который был показан на Первом симпозиуме Агентства по охране окружающей среды по разработке энергосистем с низким уровнем загрязнения окружающей среды в 1973 году, а American Motor Company произвела электрические джипы, которые Почтовая служба США использовала в Программа испытаний 1975 года.Даже НАСА помогло поднять популярность электромобиля, когда его электрический луноход стал первым пилотируемым транспортным средством, совершившим поездку на Луну в 1971 году.
Тем не менее, автомобили, разработанные и произведенные в 1970-х годах, все еще имели недостатки по сравнению с автомобилями с бензиновым двигателем. . Электромобили в то время имели ограниченную производительность — обычно достигая максимальной скорости 45 миль в час — а их типичный диапазон был ограничен 40 милями до того, как их нужно было перезарядить.
Забота об окружающей среде двигает электромобили вперед
Снова перенесемся вперед — на этот раз в 1990-е годы.За 20 лет после длинных газопроводов 1970-х годов интерес к электромобилям в основном угас. Но новые правила на федеральном уровне и уровне штата начинают менять положение вещей. Принятие поправки к Закону о чистом воздухе 1990 г. и Закона об энергетической политике 1992 г., а также новых правил выбросов при транспортных средствах, выпущенных Калифорнийским советом по воздушным ресурсам, помогли возобновить интерес к электромобилям в США.
В это время автопроизводители начали преобразование некоторых из своих популярных моделей автомобилей в электромобили.Это означало, что электромобили теперь достигли скорости и производительности намного ближе к автомобилям с бензиновым двигателем, и многие из них имели запас хода в 60 миль.
Одним из самых известных электромобилей того времени был GM EV1, автомобиль, который широко показан в документальном фильме 2006 года « Кто убил электромобиль?». Вместо того, чтобы модифицировать существующий автомобиль, GM спроектировала и разработала EV1 с нуля. Благодаря дальности действия 80 миль и способности разгоняться от 0 до 50 миль в час всего за семь секунд, EV1 быстро стал культовым.Но из-за высоких производственных затрат EV1 никогда не был коммерчески жизнеспособным, и GM прекратила его производство в 2001 году.
В условиях быстро развивающейся экономики, роста среднего класса и низких цен на газ в конце 1990-х годов многие потребители не беспокоились о топливе. эффективные автомобили. Несмотря на то, что в то время электромобили не привлекали особого внимания общественности, за кулисами ученые и инженеры при поддержке Министерства энергетики работали над улучшением технологий электромобилей, включая аккумуляторы.
Новое начало для электромобилей
В то время как все запуски и остановки индустрии электромобилей во второй половине 20-го века помогли показать миру перспективность технологии, настоящего возрождения электромобилей не произошло. примерно до начала 21 века. В зависимости от того, кого вы спросите, это было одно из двух событий, которые вызвали интерес, который мы наблюдаем сегодня к электромобилям.
Первым поворотным моментом, который многие предложили, было введение Toyota Prius.Выпущенный в Японии в 1997 году, Prius стал первым в мире серийным гибридным электромобилем. В 2000 году Prius был выпущен во всем мире, и он сразу же стал популярным среди знаменитостей, что помогло поднять престиж автомобиля. Чтобы воплотить Prius в реальность, Toyota использовала никель-металлогидридную батарею — технология, которая была поддержана исследованиями Министерства энергетики. С тех пор рост цен на бензин и растущее беспокойство по поводу загрязнения углеродом помогли сделать Prius самым продаваемым гибридом во всем мире за последнее десятилетие.
(Историческая сноска: до того, как Prius мог быть представлен в США, Honda выпустила гибрид Insight в 1999 году, что сделало его первым гибридом, продаваемым в США с начала 1900-х годов.)
Другим событием, которое помогло изменить форму электромобилей, было объявление в 2006 году о том, что небольшой стартап из Кремниевой долины, Tesla Motors, начнет производство роскошных спортивных электромобилей, способных проехать более 200 миль без подзарядки. В 2010 году Tesla получила ссуду в размере 465 миллионов долларов от Управления кредитных программ Министерства энергетики — ссуду, которую Tesla выплатила на целых девять лет раньше, — для создания производственного предприятия в Калифорнии.За короткое время с тех пор Tesla завоевала широкую известность благодаря своим автомобилям и стала крупнейшим работодателем в автомобильной промышленности в Калифорнии.
Объявление Tesla и последующий успех побудили многих крупных автопроизводителей ускорить работу над собственными электромобилями. В конце 2010 года на рынок США были выпущены Chevy Volt и Nissan LEAF. Первый коммерчески доступный подключаемый гибрид, Volt имеет бензиновый двигатель, который дополняет его электрический привод, когда батарея разряжена, позволяя потребителям ездить на электричестве в большинстве поездок и на бензине для увеличения запаса хода автомобиля.Для сравнения, LEAF — это полностью электрический автомобиль (часто называемый аккумуляторно-электрическим транспортным средством, электромобилем или просто электромобилем для краткости), что означает, что он питается только от электродвигателя.
В течение следующих нескольких лет другие автопроизводители начали выпуск электромобилей в США; тем не менее, потребители по-прежнему сталкивались с одной из первых проблем электромобилей — где заряжать свои автомобили на ходу. В рамках Закона о восстановлении Министерство энергетики инвестировало более 115 миллионов долларов в помощь в создании общенациональной инфраструктуры зарядки, установив более 18 000 бытовых, коммерческих и общественных зарядных устройств по всей стране.Автопроизводители и другие частные компании также установили свои собственные зарядные устройства в ключевых точках США, в результате чего сегодня общее количество зарядных устройств для электромобилей в более чем 8000 различных местах с более чем 20000 розеток для зарядки.
В то же время новая технология аккумуляторов, поддерживаемая отделом автомобильных технологий Министерства энергетики, начала выходить на рынок, помогая расширить диапазон подключаемых электромобилей. В дополнение к технологии аккумуляторов почти для всех гибридов первого поколения, исследования Департамента также помогли разработать технологию литий-ионных аккумуляторов, используемых в Volt.Совсем недавно инвестиции Департамента в исследования и разработки аккумуляторных батарей помогли сократить расходы на аккумуляторные батареи для электромобилей на 50 процентов за последние четыре года, одновременно улучшив характеристики автомобильных аккумуляторов (то есть их мощность, энергию и долговечность). Это, в свою очередь, помогло снизить стоимость электромобилей, сделав их более доступными для потребителей.
Теперь у потребителей больше возможностей, чем когда-либо, когда дело доходит до покупки электромобиля. Сегодня доступно 23 модели с подзарядкой от электросети и 36 гибридных моделей различных размеров — от двухместного Smart ED до среднеразмерного Ford C-Max Energi и роскошного внедорожника BMW i3.Поскольку цены на бензин продолжают расти, а цены на электромобили продолжают падать, электромобили становятся все более популярными — сегодня в США на дорогах находятся более 234000 электромобилей и 3,3 миллиона гибридов.
Электромобиль будущего
Трудно сказать, где будущее приведет к электромобилям, но ясно, что они обладают большим потенциалом для создания более устойчивого будущего. Если мы переведем все легковые автомобили в СШАпереходя на гибриды или подключаемые к электросети электромобили, используя нашу нынешнюю комбинацию технологий, мы могли бы снизить нашу зависимость от иностранной нефти на 30-60 процентов, одновременно снизив выбросы углерода в транспортном секторе на целых 20 процентов.
Чтобы помочь достичь этой экономии выбросов, в 2012 году президент Обама запустил EV Everywhere Grand Challenge — инициативу Министерства энергетики, объединяющую лучших и самых талантливых ученых, инженеров и представителей бизнеса Америки, чтобы сделать подключаемые к сети электромобили более доступными, чем сегодняшний бензин к 2022 году.Что касается аккумуляторов, Объединенный центр исследований накопителей энергии при Аргоннской национальной лаборатории работает над преодолением самых серьезных научных и технических барьеров, препятствующих крупномасштабному усовершенствованию аккумуляторов.
А Энергетическое агентство по перспективным исследовательским проектам (ARPA-E) продвигает революционные технологии, которые могут изменить наше представление об электромобилях. От инвестиций в новые типы аккумуляторов, которые могут работать дальше от одной зарядки, до экономически эффективных альтернатив материалам, важным для электродвигателей, проекты ARPA-E могут преобразовать электромобили.
В конце концов, только время покажет, какие дорожные электромобили возьмут на себя в будущем.
В чем разница?
- Гибридный электромобиль (или сокращенно HEV) — это транспортное средство без возможности подключения, но имеющее систему электропривода и аккумулятор. Его движущая энергия поступает только из жидкого топлива. Узнайте об истории гибрида — от первого в мире до самого продаваемого в мире.
- Подключаемый к сети гибридный электромобиль (также называемый PHEV) — это транспортное средство с возможностью подключения к сети, которое может использовать энергию для движения либо от своей батареи, либо от жидкого топлива.Прочтите о первом коммерчески доступном подключаемом гибриде.
- Полностью электрическое транспортное средство (часто называемое аккумуляторно-электрическим транспортным средством, электромобилем или для краткости электромобилем или AEV) — это транспортное средство, которое полностью получает энергию для движения от своей батареи и должно быть подключено к электросети для подзарядки. . Изучите эволюцию электромобиля, охватывая все, от его ранней популярности до средневековья и до его возрождения сегодня.
- Подключаемый к электросети электромобиль (или PEV) — это любое транспортное средство, которое может быть подключено к сети (либо подзаряжаемый гибрид, либо полностью электрический автомобиль).Узнайте, как подключаемые к электросети электромобили могут помочь нам в создании более устойчивого будущего.
Основы системы отопления и охлаждения: советы и рекомендации
Как только воздух нагревается или охлаждается у источника тепла / холода, его необходимо распределить по различным комнатам вашего дома. Этого можно добиться с помощью систем с принудительной подачей воздуха, гравитации или излучения, описанных ниже.
Системы с принудительной подачей воздуха
Система принудительной подачи воздуха распределяет тепло, производимое печью, или холод, производимый центральным кондиционером, через вентилятор с электрическим приводом, называемый нагнетателем, который нагнетает воздух через систему металлических каналов в комнаты в вашем доме.По мере того, как теплый воздух из печи втекает в комнаты, более холодный воздух в комнатах течет вниз по другому набору воздуховодов, называемых системой возврата холодного воздуха, в печь для обогрева. Эта система регулируется: вы можете увеличивать или уменьшать количество воздуха, проходящего через ваш дом. В центральных системах кондиционирования воздуха используется та же система принудительной подачи воздуха, включая вентилятор, для распределения холодного воздуха по комнатам и для возврата более теплого воздуха для охлаждения.
Объявление
Проблемы с системами принудительной подачи воздуха обычно связаны с неисправностью вентилятора.Воздуходувка также может быть шумной и добавляет стоимость электроэнергии к стоимости печного топлива. Но поскольку в ней используется воздуходувка, система принудительной подачи воздуха является эффективным способом отвода тепла или охлаждения воздуха по всему дому.
Гравитационные системы
Гравитационные системы основаны на принципе подъема горячего воздуха и опускания холодного воздуха. Следовательно, гравитационные системы нельзя использовать для распределения холодного воздуха из кондиционера. В гравитационной системе печь располагается рядом с полом или под ним.Нагретый воздух поднимается по воздуховодам и попадает в пол по всему дому. Если печь расположена на первом этаже дома, тепловые регистры обычно располагаются высоко на стенах, потому что регистры всегда должны быть выше печи. Нагретый воздух поднимается к потолку. По мере того, как воздух охлаждается, он опускается, входит в каналы возвратного воздуха и возвращается в печь для повторного нагрева.
Другой основной системой распределения для отопления является лучистая система.Источником тепла обычно является горячая вода, которая нагревается печью и циркулирует по трубам, встроенным в стену, пол или потолок.
Радиант Системы
Излучающие системы работают, обогревая стены, пол или потолок комнат или, что чаще всего, обогревая радиаторы в комнатах. Затем эти предметы нагревают воздух в комнате. В некоторых системах используются электрические нагревательные панели для выработки тепла, которое излучается в комнаты. Как и настенные гравитационные обогреватели, эти панели обычно устанавливают в теплом климате или там, где электричество относительно недорогое.Излучательные системы нельзя использовать для распределения холодного воздуха от кондиционера.
Радиаторы и конвекторы, наиболее распространенные средства распределения лучистого тепла в старых домах, используются в системах водяного отопления. Эти системы могут зависеть от силы тяжести или от циркуляционного насоса для циркуляции нагретой воды от котла к радиаторам или конвекторам. Система, в которой используется насос или циркулятор, называется гидравлической системой.
Современные системы лучистого отопления часто встраиваются в дома, построенные на фундаменте из бетонных плит.Под поверхностью бетонной плиты прокладывается сеть водопроводных труб. Когда бетон нагревается трубами, он нагревает воздух, соприкасающийся с поверхностью пола. Плита не должна сильно нагреваться; в конечном итоге он будет контактировать с воздухом во всем доме и нагревать его.
Системы Radiant, особенно когда они зависят от силы тяжести, подвержены ряду проблем. Трубы, используемые для распределения нагретой воды, могут забиться минеральными отложениями или наклониться под неправильным углом.Бойлер, в котором вода нагревается у источника тепла, тоже может выйти из строя. В новых домах системы горячего водоснабжения устанавливаются редко.
В следующем разделе вы узнаете, как термостат и другие элементы управления используются для поддержания климата в помещении, создаваемого вашими системами отопления и охлаждения.
Что такое электричество? — learn.sparkfun.com
Добавлено в избранное Любимый 63Начало работы
Электричество окружает нас повсюду, питая такие технологии, как наши сотовые телефоны, компьютеры, фонари, паяльники и кондиционеры.В современном мире от этого трудно спастись. Даже когда вы пытаетесь избежать электричества, оно по-прежнему действует в природе, от молнии во время грозы до синапсов внутри нашего тела. Но что именно — это электричество ? Это очень сложный вопрос, и по мере того, как вы копаете глубже и задаете больше вопросов, на самом деле нет окончательного ответа, только абстрактные представления о том, как электричество взаимодействует с нашим окружением.
Электричество — это природное явление, которое встречается в природе и принимает множество различных форм.В этом уроке мы сосредоточимся на современной электроэнергии: на том, что питает наши электронные гаджеты. Наша цель — понять, как электричество течет от источника питания по проводам, зажигает светодиоды, вращающиеся двигатели и питает наши устройства связи.
Электричество кратко определяется как поток электрического заряда , , но за этим простым утверждением стоит так много всего. Откуда берутся обвинения? Как мы их перемещаем? Куда они переезжают? Как электрический заряд вызывает механическое движение или заставляет вещи загораться? Так много вопросов! Чтобы начать объяснять, что такое электричество, нам нужно приблизиться, за пределы материи и молекул, к атомам, которые составляют все, с чем мы взаимодействуем в жизни.
Этот учебник основан на некоторых базовых представлениях о физике, силе, энергии, атомах и [полей] (http://en.wikipedia.org/wiki/Field_ (физика)) в частности. Мы рассмотрим основы каждой из этих физических концепций, но, возможно, также будет полезно обратиться к другим источникам.
Going Atomic
Чтобы понять основы электричества, нам нужно начать с рассмотрения атомов, одного из основных строительных блоков жизни и материи.Атомы существуют в более чем сотне различных форм в виде химических элементов, таких как водород, углерод, кислород и медь. Атомы многих типов могут объединяться, чтобы образовать молекулы, из которых состоит материя, которую мы можем физически увидеть и потрогать.
Атомы — это крошечных , максимальная длина которых составляет примерно 300 пикометров (это 3×10 -10 или 0,0000000003 метра). Медный пенни (если бы он действительно был сделан из 100% меди) имел бы 3,2х10 22 атома (3200000000000000000000000 атомов) меди внутри.
Даже атом недостаточно мал, чтобы объяснить работу электричества. Нам нужно спуститься еще на один уровень и посмотреть на строительные блоки атомов: протоны, нейтроны и электроны.
Строительные блоки атомов
Атом состоит из трех различных частиц: электронов, протонов и нейтронов. У каждого атома есть центральное ядро, в котором протоны и нейтроны плотно упакованы вместе. Ядро окружает группа вращающихся электронов.
Очень простая модель атома. Он не масштабируется, но помогает понять, как устроен атом. Ядро ядра протонов и нейтронов окружено вращающимися электронами.
В каждом атоме должен быть хотя бы один протон. Число протонов в атоме важно, потому что оно определяет, какой химический элемент представляет собой атом. Например, атом с одним протоном — это водород, атом с 29 протонами — это медь, а атом с 94 протонами — это плутоний.Это количество протонов называется атомным номером атома .
Ядро-партнер протона, нейтроны, служат важной цели; они удерживают протоны в ядре и определяют изотоп атома. Они не критичны для нашего понимания электричества, поэтому давайте не будем о них беспокоиться в этом уроке.
Электроны критически важны для работы электричества (обратите внимание на общую тему в их названиях?) В наиболее стабильном, сбалансированном состоянии атом будет иметь такое же количество электронов, что и протоны.Как и в модели атома Бора ниже, ядро с 29 протонами (что делает его атомом меди) окружено равным числом электронов.
По мере развития нашего понимания атомов развивались и наши методы их моделирования. Модель Бора — очень полезная модель атома при изучении электричества.
Не все электроны атома навсегда связаны с атомом. Электроны на внешней орбите атома называются валентными электронами. При наличии достаточной внешней силы валентный электрон может покинуть орбиту атома и стать свободным. Свободные электроны позволяют нам перемещать заряд, в чем и заключается вся суть электричества. Кстати о зарядке …
Текущие расходы
Как мы упоминали в начале этого урока, электричество определяется как поток электрического заряда. Заряд — это свойство материи, такое же как масса, объем или плотность. Это измеримо. Точно так же, как вы можете количественно оценить массу объекта, вы можете измерить его заряд. Ключевой концепцией заряда является то, что он может быть двух типов: положительный (+) или отрицательный (-) .
Чтобы перемещать заряд, нам нужно носителей заряда , и именно здесь наши знания об атомных частицах — в частности, об электронах и протонах — пригодятся. Электроны всегда несут отрицательный заряд, а протоны — положительно. Нейтроны (верные своему названию) нейтральны, у них нет заряда. И электроны, и протоны несут одинаковое количество заряда , , только другого типа.
Модель атома лития (3 протона) с обозначенными зарядами.
Заряд электронов и протонов важен, потому что он дает нам возможность воздействовать на них силой. Электростатическая сила!
Электростатическая сила
Электростатическая сила (также называемая законом Кулона) — это сила, действующая между зарядами. В нем говорится, что заряды одного типа отталкиваются друг от друга, а заряды противоположных типов притягиваются друг к другу. Противоположности притягивают, а любит отталкивать .
Величина силы, действующей на два заряда, зависит от того, как далеко они находятся друг от друга.Чем ближе подходят два заряда, тем больше становится сила (сдвигающая или отталкивающая).
Благодаря электростатической силе электроны отталкивают другие электроны и притягиваются к протонам. Эта сила является частью «клея», удерживающего атомы вместе, но это также инструмент, который нам нужен, чтобы заставить электроны (и заряды) течь!
Поток начислений
Теперь у нас есть все инструменты, чтобы заставить заряды течь. Электроны в атомах могут действовать как наш носитель заряда , потому что каждый электрон несет отрицательный заряд.Если мы можем освободить электрон из атома и заставить его двигаться, мы сможем создать электричество.
Рассмотрим атомную модель атома меди, одного из предпочтительных источников элементов для потока заряда. В сбалансированном состоянии медь имеет 29 протонов в ядре и такое же количество электронов, вращающихся вокруг нее. Электроны вращаются на разных расстояниях от ядра атома. Электроны, расположенные ближе к ядру, испытывают гораздо более сильное притяжение к центру, чем электроны на далеких орбитах. Крайние электроны атома называются валентными электронами , для их освобождения от атома требуется наименьшее количество силы.
Это диаграмма атома меди: 29 протонов в ядре, окруженные полосами вращающихся электронов. Электроны, расположенные ближе к ядру, трудно удалить, в то время как валентный электрон (внешнее кольцо) требует относительно небольшой энергии для выброса из атома.
Используя достаточную электростатическую силу на валентный электрон — либо толкая его другим отрицательным зарядом, либо притягивая его положительным зарядом — мы можем выбросить электрон с орбиты вокруг атома, создав свободный электрон.
Теперь рассмотрим медную проволоку: вещество, заполненное бесчисленными атомами меди. Поскольку наш свободный электрон плавает в пространстве между атомами, его тянут и подталкивают окружающие заряды в этом пространстве. В этом хаосе свободный электрон в конце концов находит новый атом, за который он цепляется; при этом отрицательный заряд этого электрона выбрасывает другой валентный электрон из атома. Теперь новый электрон дрейфует в свободном пространстве, пытаясь сделать то же самое. Этот цепной эффект может продолжаться и продолжаться, создавая поток электронов, называемый электрическим током .
Очень упрощенная модель зарядов, протекающих через атомы для создания тока.
Проводимость
Некоторые элементарные типы атомов лучше других выделяют свои электроны. Чтобы получить наилучший поток электронов, мы хотим использовать атомы, которые не очень крепко держатся за свои валентные электроны. Электропроводность элемента определяет, насколько сильно электрон связан с атомом.
Элементы с высокой проводимостью, которые имеют очень подвижные электроны, называются проводниками .Это типы материалов, которые мы хотим использовать для изготовления проводов и других компонентов, которые способствуют электронному потоку. Металлы, такие как медь, серебро и золото, обычно являются лучшим выбором в качестве хороших проводников.
Элементы с низкой проводимостью называются изоляторами . Изоляторы служат очень важной цели: они предотвращают поток электронов. Популярные изоляторы включают стекло, резину, пластик и воздух.
Статическое или текущее электричество
Прежде чем мы продолжим, давайте обсудим две формы, которые может принимать электричество: статическое или текущее.При работе с электроникой гораздо чаще встречается текущее электричество, но также важно понимать статическое электричество.
Статическое электричество
Статическое электричество возникает, когда на объектах, разделенных изолятором, накапливаются противоположные заряды. Статическое (как в «состоянии покоя») электричество существует до тех пор, пока две группы противоположных зарядов не найдут путь между собой, чтобы сбалансировать систему.
Когда заряды все же находят средство уравновешивания, происходит статический разряд .Притяжение зарядов становится настолько большим, что они могут проходить даже через лучшие изоляторы (воздух, стекло, пластик, резина и т. Д.). Статические разряды могут быть вредными в зависимости от того, через какую среду проходят заряды и на какие поверхности переносятся заряды. Выравнивание зарядов через воздушный зазор может привести к видимому сотрясению, поскольку бегущие электроны сталкиваются с электронами в воздухе, которые возбуждаются и выделяют энергию в виде света.
Запальные устройства с искровым разрядником используются для создания управляемого статического разряда.Противоположные заряды накапливаются на каждом из проводников, пока их притяжение не станет настолько сильным, что заряды могут течь по воздуху.Одним из наиболее ярких примеров статического разряда является молния . Когда облачная система накапливает достаточно заряда относительно другой группы облаков или земли, заряды будут пытаться уравновеситься. Когда облако разряжается, огромное количество положительных (а иногда и отрицательных) зарядов проходит по воздуху от земли к облаку, вызывая видимый эффект, с которым мы все знакомы.
Статическое электричество также существует, когда мы терем воздушные шары о голову, чтобы волосы встали дыбом, или когда мы шаркали по полу в пушистых тапочках и шокировали семейную кошку (конечно, случайно). В каждом случае трение от трения о разные типы материалов переносит электроны. Объект, теряющий электроны, становится положительно заряженным, а объект, получающий электроны, становится отрицательно заряженным. Два объекта притягиваются друг к другу, пока не найдут способ уравновесить их.
Работая с электроникой, мы обычно не сталкиваемся со статическим электричеством. Когда мы это делаем, мы обычно пытаемся защитить наши чувствительные электронные компоненты от статического разряда. Профилактические меры против статического электричества включают ношение браслетов ESD (электростатический разряд) или добавление специальных компонентов в схемы для защиты от очень высоких скачков заряда.
Текущее электричество
Текущее электричество — это форма электричества, которая делает возможными все наши электронные устройства.Эта форма электричества существует, когда заряды могут постоянно течь . В отличие от статического электричества, когда заряды собираются и остаются в покое, текущее электричество является динамическим, заряды всегда находятся в движении. Мы сосредоточимся на этой форме электричества на протяжении всей оставшейся части урока.
Цепи
Для протекания электрического тока требуется цепь: замкнутая, бесконечная петля из проводящего материала. Схема может быть такой же простой, как проводящий провод, соединенный встык, но полезные схемы обычно содержат смесь провода и других компонентов, которые управляют потоком электричества.Единственное правило, когда дело доходит до создания цепей, — в них не должно быть изоляционных промежутков .
Если у вас есть провод, полный атомов меди, и вы хотите вызвать поток электронов через него, всем свободным электронам нужно где-то течь в одном и том же общем направлении. Медь — отличный проводник, идеальный для протекания зарядов. Если цепь из медного провода разорвана, заряды не могут проходить через воздух, что также предотвратит перемещение любого из зарядов к середине.
С другой стороны, если бы провод был соединен встык, у всех электронов был бы соседний атом, и все они могли бы течь в одном и том же общем направлении.
Теперь мы понимаем , как могут течь электронов, но как мы вообще можем заставить их течь? Затем, когда электроны текут, как они производят энергию, необходимую для освещения лампочек или вращающихся двигателей? Для этого нам нужно понимать электрические поля.
Электрические поля
Мы знаем, как электроны проходят через материю для создания электричества.Это все, что касается электричества. Ну почти все. Теперь нам нужен источник, чтобы вызвать поток электронов. Чаще всего источником электронного потока является электрическое поле.
Что такое поле?
Поле — это инструмент, который мы используем для моделирования физических взаимодействий, которые не связаны с наблюдаемыми контактами . Поля нельзя увидеть, поскольку они не имеют физического внешнего вида, но эффект, который они оказывают, очень реален.
Мы все подсознательно знакомы с одной областью, в частности: гравитационным полем Земли, эффектом притяжения массивного тела другими телами.Гравитационное поле Земли можно смоделировать с помощью набора векторов, направленных в центр планеты; независимо от того, где вы находитесь на поверхности, вы почувствуете силу, толкающую вас к ней.
Сила или напряженность полей неодинакова во всех точках поля. Чем дальше вы находитесь от источника поля, тем меньшее влияние поле оказывает. Величина гравитационного поля Земли уменьшается по мере удаления от центра планеты.
Когда мы продолжим изучать электрические поля, вспомним, в частности, как работает гравитационное поле Земли, оба поля имеют много общего.Гравитационные поля действуют на объекты массы, а электрические поля действуют на объекты заряда.
Электрополя
Электрические поля (е-поля) — важный инструмент для понимания того, как начинается и продолжает течь электричество. Электрические поля описывают тянущую или толкающую силу в пространстве между зарядами . По сравнению с гравитационным полем Земли, электрические поля имеют одно существенное отличие: в то время как поле Земли обычно привлекает только другие объекты массы (поскольку все объекты массы , поэтому значительно менее массивны), электрические поля отталкивают заряды так же часто, как и притягивают их.
Направление электрических полей всегда определяется как направление , положительный тестовый заряд переместился бы на , если бы его уронили в поле. Испытательный заряд должен быть бесконечно малым, чтобы его заряд не влиял на поле.
Мы можем начать с построения электрических полей для одиночных положительных и отрицательных зарядов. Если вы уроните положительный тестовый заряд рядом с отрицательным зарядом, тестовый заряд будет притягиваться к отрицательному заряду . Итак, для одиночного отрицательного заряда мы рисуем стрелки электрического поля, направленные внутрь во всех направлениях.Тот же испытательный заряд, падающий рядом с другим положительным зарядом , приведет к отталкиванию наружу, что означает, что мы рисуем стрелок, выходящих из положительного заряда.
Электрические поля одиночных зарядов. Отрицательный заряд имеет внутреннее электрическое поле, потому что он притягивает положительные заряды. Положительный заряд имеет внешнее электрическое поле, отталкиваясь, как заряды.
Группы электрических зарядов могут быть объединены для создания более полных электрических полей.
Равномерное электронное поле вверху направлено от положительных зарядов к отрицательным. Представьте себе крошечный положительный тестовый заряд, упавший в электронное поле; он должен следовать в направлении стрелок. Как мы видели, электричество обычно включает в себя поток электронов — отрицательных зарядов — которые текут против электрических полей.
Электрические поля дают нам толкающую силу, необходимую для индукции электрического тока. Электрическое поле в цепи похоже на электронный насос: большой источник отрицательных зарядов, который может толкать электроны, которые будут течь по цепи к положительному сгустку зарядов.
Электрический потенциал (энергия)
Когда мы используем электричество для питания наших цепей, устройств и устройств, мы действительно преобразуем энергию. Электронные схемы должны иметь возможность накапливать энергию и передавать ее другим формам, таким как тепло, свет или движение. Накопленная энергия цепи называется электрической потенциальной энергией.
Энергия? Потенциальная энергия?
Чтобы понять потенциальную энергию, нам нужно понять энергию в целом. Энергия определяется как способность объекта выполнять работу , другого объекта, что означает перемещение этого объекта на некоторое расстояние.Энергия присутствует в многих формах , некоторые мы можем видеть (например, механические), а другие — нет (например, химические или электрические). Независимо от того, в какой форме она находится, энергия существует в одном из двух состояний : кинетическом или потенциальном.
Объект имеет кинетическую энергию , когда он движется. Количество кинетической энергии объекта зависит от его массы и скорости. Потенциальная энергия , с другой стороны, представляет собой запасенную энергию , когда объект находится в состоянии покоя. Он описывает, сколько работы мог бы сделать объект, если бы он был приведен в движение.Это энергия, которую мы обычно можем контролировать. Когда объект приводится в движение, его потенциальная энергия превращается в кинетическую.
Вернемся к использованию гравитации в качестве примера. Шар для боулинга, неподвижно сидящий на вершине башни Халифа, имеет много потенциальной (накопленной) энергии. После падения мяч, притягиваемый гравитационным полем, ускоряется по направлению к земле. Когда мяч ускоряется, потенциальная энергия преобразуется в кинетическую (энергию движения). В конце концов вся энергия мяча превращается из потенциальной в кинетическую, а затем передается всему, в что он попадает.Когда мяч находится на земле, у него очень низкая потенциальная энергия.
Электрический потенциал энергии
Подобно тому, как масса в гравитационном поле имеет потенциальную энергию гравитации, заряды в электрическом поле имеют электрическую потенциальную энергию . Электрическая потенциальная энергия заряда описывает, сколько у него накопленной энергии, когда она приводится в движение электростатической силой, эта энергия может стать кинетической, и заряд может выполнять работу.
Подобно шару для боулинга, сидящему на вершине башни, положительный заряд в непосредственной близости от другого положительного заряда имеет высокую потенциальную энергию; оставленный свободным для движения, заряд будет отталкиваться от аналогичного заряда.Положительный тестовый заряд, помещенный рядом с отрицательным зарядом, будет иметь низкую потенциальную энергию, как и шар для боулинга на земле.
Чтобы привить чему-либо потенциальную энергию, мы должны выполнить работу , перемещая это на расстояние. В случае шара для боулинга работа заключается в том, чтобы поднять его на 163 этажа против поля силы тяжести. Точно так же должна быть проделана работа, чтобы подтолкнуть положительный заряд к стрелкам электрического поля (либо к другому положительному заряду, либо от отрицательного заряда).Чем дальше идет заряд, тем больше работы вам предстоит сделать. Точно так же, если вы попытаетесь отвести отрицательный заряд от от положительного заряда — против электрического поля — вам придется выполнять работу.
Для любого заряда, находящегося в электрическом поле, его электрическая потенциальная энергия зависит от типа (положительный или отрицательный), количества заряда и его положения в поле. Электрическая потенциальная энергия измеряется в джоулях ( Дж, ).
Электрический потенциал
Электрический потенциал основан на электрическом потенциале energy , чтобы помочь определить, сколько энергии хранится в электрических полях .Это еще одна концепция, которая помогает нам моделировать поведение электрических полей. Электрический потенциал равен , а не , как электрическая потенциальная энергия!
В любой точке электрического поля электрический потенциал — это количество электрической потенциальной энергии, деленное на количество заряда в этой точке. Он убирает количество заряда из уравнения и оставляет нам представление о том, сколько потенциальной энергии могут обеспечить определенные области электрического поля. Электрический потенциал измеряется в джоулях на кулон ( Дж / Кл ), который мы определяем как вольт и (В).
В любом электрическом поле есть две точки электрического потенциала, которые представляют для нас значительный интерес. Есть точка с высоким потенциалом, где положительный заряд будет иметь максимально возможную потенциальную энергию, и есть точка с низким потенциалом, где заряд будет иметь минимально возможную потенциальную энергию.
Один из наиболее распространенных терминов, которые мы обсуждаем при оценке электричества, — это напряжение . Напряжение — это разность потенциалов между двумя точками электрического поля.Напряжение дает нам представление о том, сколько толкающей силы имеет электрическое поле.
Имея в своем арсенале потенциальную и потенциальную энергию, у нас есть все ингредиенты, необходимые для производства электричества. Давай сделаем это!
Электричество в действии!
Изучив физику элементарных частиц, теорию поля и потенциальную энергию, мы теперь знаем достаточно, чтобы заставить электричество течь. Сделаем схему!
Сначала рассмотрим ингредиенты, необходимые для производства электричества:
- Электричество определяется как поток заряда .Обычно наши заряды переносятся свободно текущими электронами.
- Отрицательно заряженные электронов слабо прикреплены к атомам проводящих материалов. Небольшим толчком мы можем освободить электроны от атомов и заставить их течь в общем однородном направлении.
- Замкнутая цепь из проводящего материала обеспечивает путь для непрерывного потока электронов.
- Заряды двигаются электрическим полем . Нам нужен источник электрического потенциала (напряжения), который толкает электроны из точки с низкой потенциальной энергией в точку с более высокой потенциальной энергией.
Короткое замыкание
Батареи — распространенные источники энергии, преобразующие химическую энергию в электрическую. У них есть две клеммы, которые подключаются к остальной цепи. На одном выводе имеется избыток отрицательных зарядов, а на другом все положительные заряды сливаются. Это разность электрических потенциалов, ожидающая начала действия!
Если мы подключим наш провод, полный проводящих атомов меди, к батарее, это электрическое поле будет влиять на отрицательно заряженные свободные электроны в атомах меди.Одновременно подталкиваемые отрицательной клеммой и притягиваемой положительной клеммой, электроны в меди будут перемещаться от атома к атому, создавая поток заряда, который мы знаем как электричество.
После секунды протекания тока электроны на самом деле переместились на очень, мало — доли сантиметра. Однако энергия, производимая текущим потоком, составляет огромных , тем более что в этой цепи нет ничего, что могло бы замедлить поток или потребить энергию.Подключение чистого проводника напрямую к источнику энергии — плохая идея, . Энергия очень быстро перемещается по системе и превращается в тепле в проволоке, которое может быстро превратиться в плавящуюся проволоку или пожар.
Освещение лампочки
Вместо того, чтобы тратить всю эту энергию, не говоря уже о разрушении аккумулятора и провода, давайте построим схему, которая сделает что-нибудь полезное! Обычно электрическая цепь переводит электрическую энергию в другую форму — свет, тепло, движение и т. Д.Если мы подключим лампочку к батарее с помощью проводов между ними, мы получим простую функциональную схему.
Схема: батарея (слева), подключенная к лампочке (справа), цепь замыкается, когда замыкается переключатель (вверху). Когда цепь замкнута, электроны могут течь, проталкиваясь от отрицательной клеммы батареи через лампочку к положительной клемме.
В то время как электроны движутся со скоростью улитки, электрическое поле почти мгновенно влияет на всю цепь (мы говорим о скорости света быстро).Электроны по всей цепи, будь то с самым низким потенциалом, с самым высоким потенциалом или непосредственно рядом с лампочкой, находятся под влиянием электрического поля. Когда переключатель замыкается и электроны подвергаются воздействию электрического поля, все электроны в цепи начинают течь, по-видимому, в одно и то же время. Ближайшие к лампочке заряды сделают один шаг по цепи и начнут преобразовывать энергию из электрической в световую (или тепловую).
Ресурсы и будущее
В этом уроке мы раскрыли лишь крохотную часть пресловутого айсберга.Остается еще масса нераскрытых концепций. Отсюда мы рекомендуем вам перейти сразу к нашему руководству по напряжению, току, сопротивлению и закону Ома. Теперь, когда вы знаете все об электрических полях (напряжении) и текущих электронах (токе), вы на правильном пути к пониманию закона, регулирующего их взаимодействие.
Для получения дополнительной информации и визуализаций, объясняющих электричество, посетите этот сайт.
Вот еще несколько концептуальных руководств для начинающих, которые мы рекомендуем прочитать:
Или, может быть, вы хотите узнать что-нибудь практическое? В этом случае ознакомьтесь с некоторыми из этих руководств по навыкам базового уровня:
.С какого возраста можно надевать круг для плавания новорожденному. Какие меры безопасности нужно соблюдать при плавании с младенцем. Как правильно выбрать круг для купания новорожденного. . . .
Как одевать новорожденного в домашних условиях. Какую одежду выбрать для сна и бодрствования. Нужны ли чепчик и носочки. Как определить, что малышу комфортно. Рекомендации педиатров . . .