Что такое динамик простыми словами? :: SYL.ru
Динамики, микрофоны, громкоговорители и другие аксессуары, выполняющие функцию воспроизведения звука, в последнее время пользуются большой популярностью среди многих поклонников музыки. Интерес у них вызывает не только их мощность и качество, но и сам принцип работы. В этой статье мы попытались простыми словами дать ответ на вопрос «Что такое динамик?» и объяснить то, как он работает. Если вам это действительно интересно, то рады вас приветствовать! Приготовьтесь, впереди вас ждет немало интересной информации!
Что такое динамик?
Динамик — это самый популярный звукоизлучатель из всех существующих. Его можно найти практически везде: в телевизорах, мобильных телефонах, планшетах, портативных компьютерах, наушниках, фотоаппаратах и т. д. Конструкция динамика, о которой мы подробно расскажем немного позже, проста как пять копеек. Как и любое другое устройство, она имеет свои плюсы и минусы. К достоинствам такой конструкции относятся:
- Хорошая передача низкочастотных звуков.
- Разнообразие размеров и форм.
- Надежность.
- Простота.
Но, как мы уже и говорили, здесь есть и свои минусы:
- Частые искажения сигнала.
- Нелинейность частотного отклика системы.
Как работает динамик?
Каким образом проходит звук через динамик? Кто-то может подумать, что принцип работы динамика очень сложен, но, на самом деле, его можно объяснить простыми и понятными всем словами.
Все мы с детства знаем, что если поднести друг к другу два магнита, то их противоположные полюса начнут притягиваться. Кто-то может сильно удивиться, но такое явление присутствует и в обычном динамике.
Главной деталью устройства является катушка, на которую намотана проволока. Когда через нее пускают электрический заряд, то в итоге получается электромагнит. Стоит добавить, что полярность получившегося магнита напрямую зависит от того, в какую сторону был пущен разряд.
Второй неотъемлемой частью динамика является постоянный магнит в форме кольца. Вышеупомянутую катушку засовывают в дыру этого колечка, а затем соединяют ее с мембраной всей конструкции. Как правило, в качестве мембраны выступает конус из бумаги или пластмассы.
Данная технология работает и в другом направлении. При раскачивании катушки поле постоянного магнита будет изнутри генерировать электронный разряд, направление которого будет меняться с частотой колебаний.
Контакты катушки принимают ток, его направление меняется под влиянием звуковых частот того или иного музыкального трека. Мембрана «выталкивает» воздух перед собой, таким образом создавая звуковые волны. Чтобы мембрана работала лучше, ее создают в виде конуса.
Акустическое оформление
Чтобы в полной мере понять, что такое динамик, нельзя обойти стороной тему акустического оформления.
Акустическое оформление — это детали, которые находятся вокруг динамика (если говорить проще, то это его корпус). Далеко не все уделяют ему должное внимание, а зря: от акустического оформления очень зависит итоговый звук, воспроизводимый динамиком.
Виды акустического оформления
- Закрытое. Динамик устанавливают в середине стенки полой коробки, которая зачастую состоит из пластика или дерева. Главным достоинством такой технологии является ее простота. Главным недостатком — низкий коэффициент полезного действия.
- Фазоинвертор. Динамик крепят по центру стенки полой коробки, которая, как правило, сделана из пластика или дерева, но с той лишь разницей, что под или над ним ставится трубка или создается отверстие. Для чего это необходимо? Содержимым этой трубки выступает заранее рассчитанное количество воздуха, являющееся дополнительным источником звука. При такой схеме устройство создает колебания как внутри коробки, так и за ее пределами. Эти колебания выходят из отверстия, таким образом увеличивая исходящую громкость.
- Закрытое с пассивным излучателем. По конструкции напоминает предыдущий вариант, но в данном случае вторым излучателем выступает не воздух, а динамик, не способный себя двигать.
- Рупор-динамик (или динамик-громкоговоритель). Такое название он получил из-за своего конусообразного корпуса. Как правило, такой корпус сделан из нескольких деталей, но встречаются и цельные конструкции. В случае с рупорами небольших размеров качество воспроизведения звука находится на втором плане, поскольку рупор в несколько раз усиливает громкость и качество от этого сильно не портится. В теории через рупор можно проводить и низкочастотные звуки, но для этого он должен быть просто невероятных размеров.
- Акустический лабиринт. Эта конструкция является своеобразным гибридом второго и четвертого вариантов. Внутри нее находится трубка в форме змейки, а на ее конце присутствует рупор. Зачастую конструкции такого типа применяются для больших концертных сабвуферов.
Электростатические излучатели
Чтобы окончательно дать ответ на вопрос «Что такое динамик?», обязательно нужно рассказать про электростатические излучатели.
Эти устройства состоят из двух статоров, на которые посылают переменные звуковые колебания, и пленки между ними. В качестве последней выступает перфорированный металлический лист, на который подается высокое напряжение. Прозрачность пленки составляет около 50%. Покрыта она диэлектрическим веществом, необходимым для защиты пользователя от негативного влияния высокого напряжения.
Плюсы и минусы
Электростатический излучатель — это действительно очень интересная вещь, изучение которой вызовет неподдельный восторг у людей, интересующихся данной тематикой. Но у электростатов, как и у классических динамиков, есть свои достоинства и недостатки.
Давайте начнем с рассмотрения плюсов:
- Ровная амплитудно-частотная характеристика.
- Малый размер мембраны, которая возбуждается по всей своей площади.
- Отсутствие каких-либо фазовых искажений.
- Простая конструкция.
Недостатки:
- Слабая чувствительность.
- Потребность в высоковольтном источнике и высоковольтном усилителе.
- Количество низких частот зависит от площади воспроизводителя звука.
- Высокая направленность в среднечастотном и высокочастотном диапазоне.
Теперь вы знаете значение слова «динамик», а также то, как он работает и каких видов бывает. Оставайтесь с нами, если хотите и дальше получать интересную информацию!
3 самые необычные акустические системы | Домашние аудиосистемы | Блог
В большинстве случаев во всем мире музыку воспроизводят электродинамические громкоговорители, или, в обиходе, динамики. Однако конструкции этих устройств уже 122 года и в ней есть свои недостатки.
Динамик состоит из магнита и звуковой катушки, которая колеблется в магнитном поле и передает движение на диффузор. Последний должен быть очень легким и одновременно прочным. Чем легче диффузор — тем быстрее он будет колебаться и отыгрывать быстрые звуки — барабаны будут четче, бас собраннее и т.п. Чем он прочнее, тем меньше будет искажений, поскольку мембрана будет меньше изгибаться при работе.
Но даже самые качественные динамики дают в десятки раз больше искажений, чем современные усилители и звуковые карты. Многолетние эксперименты с различными сплавами и композитными материалами улучшили положение, но не сделали прорыва. «Куда это годится?!» — воскликнули инженеры и создали альтернативные конструкциии для воспроизведения звука.
Электростатические колонки
Самый распространенный тип нестандартных громкоговорителей, фундаментом для создания которых стал принцип электростатического взаимодействия. Между двух решеток-статоров натянута мембрана из сверхлегкого материала с проводящим напылением. Она до 10 раз тоньше человеческого волоса, а ее масса немногим больше массы окружающего ее воздуха. На решетки подается многократно усиленный звуковой сигнал, мембрана колеблется между ними и воспроизводит звук с рекордно низким коэффициентом нелинейных искажений — до 0,05 %! В итоге излучатель отыгрывает очень детальный и прозрачный звук, в котором слышен каждый нюанс.
Сама технология появилась еще в конце позапрошлого столетия. Однако долго не удавалось создать достаточно легкую мембрану для такой акустики. Поэтому первые электростатические колонки для массового рынка — Quad Electrostatic — вышли лишь в 1957 году и произвели маленькую революцию на рынке звукотехники. Они давали настолько честный звук, что стали использоваться даже в студиях. Звукорежиссер Филипп Нюэлл в книге Project-студии пишет:
Мониторы Quad Electrostatic 1957 года всё ещё могут постоять за себя. За последние 40 лет не было создано ничего существенно лучшего.
Однако электростаты не лишены недостатков. Во-первых, они излучают звук в обе стороны. Поэтому вдоль стены их не поставишь — звук от нее будет отражаться и вносить фазовые искажения. Понадобится большое помещение. Но даже в большой комнате будут взаимовычитаться басовые волны, ведь их длина — десятки метров.
Отсюда второй недостаток — мало баса. Дело усугубляется и тем, что излучать басовые волны может лишь очень большая мембрана, производить которую будет уже невыгодно, поэтому амплитудно-частотная характеристика (АЧХ) большинства электростатов имеет спад в районе 60-70 Гц. Для студийных мониторов ближнего поля — в самый раз, а вот для рядового потребителя может быть маловато.
Третий недостаток — узкая направленность излучателя из-за плоской мембраны. То есть, звучат колонки хорошо, но только на участке в 1м2. И, наконец, электростатические колонки требуют мощного и дорогого усилителя для работы.
Производители современных электростатов научились решать некоторые из этих проблем. Излучатели сегодня делают не плоскими, а полукруглыми, чтобы звук распространялся по комнате равномерно. В систему теперь добавляют низкочастотный динамик, который дает глубокий бас.
Однако эти и другие инженерные ухищрения вместе с требуемой при производстве прецизионной точностью и специфическими материалами сделали и без того недешевую конструкцию еще менее доступной для широких масс. АС такого типа стоят десятки тысяч долларов.
Контрапертурные аудиосистемы
Контрапертурные акустические системы по праву можно назвать одними из самых экзотических. Их конструкция состоит из двух одинаковых динамиков, расположенных вертикально строго друг напротив друга. Звуковые волны сталкиваются абсолютно синхронно и излучают результирующую волну во всех направлениях. Иными словами, получается всенаправленная акустика, которая равномерно заполняет собой звуком все пространство в комнате. Нет необходимости искать оптимальную комфортную зону прослушивания, в любом углу музыка будет звучать одинаково качественно.
Помимо всенаправленности, звук будет лишен доплеровской интермодуляции — это искажения, на слух проявляющиеся как гитарный эффект флэнжера. Они возникают из-за того, что динамик, излучая звук, то приближается к слушателю, то удаляется от него. Контрапертурные АС статичны, поэтому лишены интермодуляций. Многие слушатели отмечают невероятный комфорт от прослушивания такой акустической системы. Дело в том, что мозг воспринимает приближающиеся и удаляющиеся от него звуки как опасные и требующие внимания (а вдруг это хищник?). Соответственно, неподвижный источник звука не воспринимается как опасность и не возбуждает нервную систему.
Разумеется, у такой конструкции есть свои недостатки: сложная система требует высокоточного производства, тщательного подбора комплекта динамиков с абсолютно идентичными характеристиками, точного монтажа излучателей и т.п. Все это увеличивает себестоимость таких устройств до астрономических значений. Тем не менее, у них есть свои фанаты и место на рынке Hi-End аудиотехники.
Вибрационные колонки
Самые доступные необычные колонки для рядового потребителя — вибрационные. Для работы такого девайса нужна большая твердая поверхность. Например, стол или окно, хотя сойдет даже коробка молока. Устройство передает поверхности звуковые колебания, превращая ее в диффузор.
Такие девайсы сделаны больше для развлечения, а не для качественного звука. Некоторые умельцы покупают вибрационный динамик отдельно и делают из него сабвуфер. А устройство, прикрепленное к отопительной батарее, превращается в оружие возмездия шумному соседу. Мощность и звук зависят от размеров и материала поверхности, на которой расположен девайс. Лучше всего будут работать тонкие поверхности, частота собственных колебаний которых меньше.
Но технология таки нашла адекватное применение. Возможность превратить любую поверхность в излучатель звука стала востребована на различных выставках, в музеях, ресторанах и магазинах. Можно, например, прикрепить вибродинамик к витрине из оргстекла, сделав невидимые громкоговорители для аудиорекламы. Или, наоборот, превратить их в арт-объект, излучающий звук непонятно каким образом. Также можно сделать излучатели, защищенные от любой непогоды.
Панели из оргстекла, превращенные в невидимые громкоговорители в музее.
Любопытно, что похожим образом работают наушники с костной проводимостью. Они не втыкаются в уши, а прислоняются к кости, передавая звуковые вибрации прямо в череп.
Динамики — это… Что такое Динамики?
Громкоговоритель — устройство для эффективного излучения звука в окружающее пространство в воздушной среде, содержащее одну или несколько излучающих головок и, при необходимости, акустическое оформление, электрические устройства (фильтры, трансформаторы, регуляторы и т. п.)
- Головка громкоговорителя — пассивный электроакустический преобразователь, предназначенный для преобразования электрической формы сигналов звуковой частоты в акустическую
- Акустическое оформление — конструктивный элемент, обеспечивающий эффективное излучение звука (акустический экран, ящик, рупор и т. п.)
Наиболее распространённым видом громкоговорителей являются электродинамические громкоговорители, использующие для звукоизлучения динамические головки, в просторечии называющиеся динамиками, так же иногда называют и сами громкоговорители.
Функционально к громкоговорителям близки телефоны (наушники), однако, в отличие от громкоговорителей они не предназначены для излучения звука в открытое пространство
Классификация громкоговорителей
Виды громкоговорителей в зависимости от способа излучения звука
- Электродинамический громкоговоритель
- Электростатический громкоговоритель
- Конденсаторный громкоговоритель
- Электретный громкоговоритель
- Пьезоэлектрический громкоговоритель
- Электромагнитный громкоговоритель
- Ионофон
- Громкоговорители на базе динамических головок специальных видов (магнепланарных, изодинамических, ленточных, ортодинамических, излучателях Хейла)
Функциональные виды громкоговорителей
- Акустическая система — громкоговоритель, предназначенный для использования в качестве функционального звена в бытовой радиоэлектронной аппаратуре, имеет высокие характеристики звуковоспроизведения; основная статья — Акустическая система
- Абонентский громкоговоритель — громкоговоритель, предназначенный для воспроизведения передач низкочастотного канала сети проводного вещания; основная статья — Абонентская радиоточка
- Концертный громкоговоритель — имеет большую громкость в сочетании с высоким качеством звукопередачи
- Громкоговорители для систем оповещения и систем озвучивания помещений (громкоговорители этих систем похожи по назначению, несколько отличаются громкостью и качеством звуковоспроизведения)
- Настенный громкоговоритель
- Потолочный громкоговоритель
- Панельный громкоговоритель
- Уличный громкоговоритель — имеет большую мощность, обычно, рупорное исполнение, в просторечии «колокол»
- Специальные громкоговорители для работы в экстремальных условиях — противоударные, противовзрывные, подводные
- Другие специальные виды громкоговорителей
Акустическая система | Абонентский громкоговоритель | Уличные громкоговорители |
Классификация по другим признакам
- Однополосный громкоговоритель — громкоговоритель, головки которого работают в одном и том же диапазоне частот
- Многополосный громкоговоритель — громкоговоритель, головки которого работают в двух или более разных диапазонах частот
- Диффузорный громкоговоритель
- Рупорный громкоговоритель — громкоговоритель, акустическим оформлением которого является жесткий рупор
- Громкоговоритель непосредственного излучения
Рупорные громкоговорители
Данный тип громкоговорителей применяется в случаях, когда не требуется высокое качество звука. Такой громкоговоритель состоит из рупорной электродинамической головки прямого излучения и рупора. Чаще всего применяется как наружнее устройство для массового оповещения, для излучения сигналов тревоги, сеть таких громкоговорителей имеется в распоряжении управления ГО и ЧС России. Использовались в прошлом в многополосной акустике, преимущественно в киноиндустрии, для воспроизведения средних и высоких частот, от 1000 до 20000 Гц, нынче эти функции взяли на себя среднечастотные динамики классической конструкции и высокочастотные твиттеры соответственно. Для более низких частот такие громкоговорители неприменимы, так как требуется рупор слишком большого размера. Главное достоинство — высокий КПД.
В настоящее время рупоры с компрессионными драйверами иногда применяются и в бытовой jbl pro), а также довольно широко распространены в нише так называемого High End Audio — эксклюзивной аудио аппаратуры для бытового пользования (Avantgarde Acoustic, Acapella Audio Arts, Cessaro), где чаще всего применяются крупногабаритные сферические рупоры на высоко- и средне-частотных диапазонах, а на низкие частоты работает активный НЧ-блок на динамических головках (хотя есть примеры полностью рупорных систем во всем диапазоне слышимых частот). Подобные изделия эксклюзивны и отличаются чрезвычайно высокой стоимостью.
Динамическая головка
Устройство
Головка электродинамической системы является электроакустическим преобразователем электрического сигнала в продольные колебания воздуха, воспринимаемые как звук. ГД обычно устроена следующим образом: имеется постоянный магнит(ранее применялись и электромагниты) цилиндрической формы[1], вокруг которого располагается гильза с катушкой из тонкой лакированной медной проволоки, гильза жёстко закреплена одним концом с бумажным, металлическим (реже) (вспененный никель), полимерным диффузором, либо с диффузором из кевларовых нитей. Выводы с катушки могут быть закреплены непосредственно на диффузоре, как видно на рисунке вверху. Диффузор обычно имеет коническую форму, но может быть и овальным, и близким к прямоугольной форме. Соответственно, если диффузор, например, овальный, рама имеет также овальную форму. Связка «диффузор—катушка» может перемещаться относительно магнита в небольших пределах, при этом катушка перемещается внутри цилиндрического магнита, не касаясь его, а диффузор несколько изменяет свою форму и сильне — положение относительно рамы. Вся эта конструкция закреплена в специальной металлической либо пластиковой раме, именуемой диффузородержателем. В конструкции более простых и дешёвых громкоговорителей, а также небольших средне- и высокочастотных громкоговорителей и громкоговорителей в наушниках может применяться непосредственное крепление диффузора к раме, при этом по краям диффузора, около кромки рамы, часто организуется характерная рельефная полоса. Она служит для увеличения гибкости и подвижности головки относительно рамы. В более дорогих и качественных среднечастотных и в большинстве низкочастотных громкоговорителях применяется подвес (также известный как верхний подвес), изготавливаемый обычно из плотной резины. Подвес представляет собой резиновое кольцо между рамой и диффузором. Он имеет колею по всей длине окружности, это увеличивает его гибкость и уменьшает износ. Края диффузора закреплены на внутреннем крае кольца подвеса, а внешний край подвеса прикреплён к раме. Такая конструкция обеспечивает большой ход головки при воспроизведении сильных импульсных колебаний и при воспроизведении низких частот. Можно заметить невооружённым глазом, как диффузор низкочастотного динамика дрожит в такт басам при воспроизведении музыки. Ход диффузора и головки может, в случае большой громкости и подходящей конструкции динамика, достигать нескольких сантиметров и более, однако при превышении эксплуатационных параметров напряжения, подаваемого на динамик, возможно разрушение динамической системы. Помимо этого, возможно перегорание катушки из тонкой проволоки вследствие чрезмерно высокого протекающего по ней тока. Следует отметить, что регулярное прослушивание музыки на максимальных уровнях громкости отрицательно влияет на здоровье, вызывая психические и нервные расстройства и уменьшение чувствительности слуха.
Диффузор сравнительно жёсткий и сохраняет постоянную форму, однако обращаться с ним следует бережно, не прилагать значительных усилий, так как бумага — не слишком прочный материал и может порваться, а полимер — смяться или оторваться. В случае повреждения диффузора громкоговоритель обычно сохраняет работоспособность, однако прослушивание, например, музыки на нём не доставит удовольствия — из-за порывов на диффузоре возникают сильные искажения, дребезги и хрипы, нарушаются многие параметры громкоговорителя.
В случае, если динамик проектируется как широкополосный, или по крайней мере излучающий расширенный диапазон частот, в центре диффузора часто размещается бумажный, полимерный или металлический купол. Дело в том, что если при воспроизведении низших расчётных для данного динамика частот колеблется вся поверхность диффузора, то при излучении высших частот данного динамика — только центральная часть, область около катушки. Поэтому купол служит для улучшенного воспроизведения высоких частот.
Мощность динамиков, как правило, измеряется в ваттах (при этом существует PMPO — общая мощность, которую потребляет динамик, и выходящая мощность (КПД динамиков как правило не превышает 1-3 %). PMPO обычно составляет сотни ватт (иногда — киловатты для мощных колонок), а выходная мощность — ватты, реже десятки ватт (для мощных динамиков), очень редко более ста.
Принцип работы
При подаче электрического сигнала звуковой частоты, катушка производит вынужденные колебания в поле постоянного магнита под действием силы Ампера, увлекая диффузор и через неё создавая волны разряжения и сжатия в воздухе. Связка «диффузор-катушка» колеблется с такой же частотой, как и частота подаваемого тока. При малой толщине магнитопроводов, образующих зазор, действительно работает только малая часть катушки, приблизительно равная толщине магнитопроводов зазора. Выходящие за пределы зазора части катушки почти не работают, у таких динамиков очень низкий коэффициент полезного действия. Силу, действующую на катушку можно вычислить применив закон Ампера
- , где
B — индукция магнитного поля в зазоре, I — ток через катушку, l — часть длины провода катушки находящаяся в зазоре магнитопроводов.
- , где
n — число витков катушки находящихся в зазоре, d1 — диаметр катушки,
- , где
h — толщина магнитопроводов образующих зазор, d2 — диаметр провода катушки. Для повышения коэффициента полезного действия динамика необходимо увеличивать толщину магнитопроводов, образующих зазор, при этом пропорционально увеличению зазора уменьшается магнитная индукция в зазоре B, но увеличивается относительная рабочая часть катушки, то есть относительная рабочая часть длины провода катушки l до некоторой величины, после которой относительная рабочая часть длины провода катушки начинает уменьшаться. При изменении амплитуды электрического сигнала звуковой частоты также изменяется положение диффузора. Так как электрический сигнал звуковой частоты, подаваемый на катушку, имеет частоту в пределах слышимости человеческого уха[2], то и диффузор колеблется относительно постоянного магнита с такой же частотой.
Здесь следует сделать замечание, что реальная частота колебаний диффузора большинства ГД и прилегающих слоёв воздуха лежит в пределах примерно 300 — 12000 Гц, причём чем меньше, хуже и проще громкоговоритель, тем у́же этот частотный диапазон и тем менее линейна его амплитудно-частотная характеристика. На частотах за пределами этого диапазона излучаемая мощность незначительна. Для воспроизведения наиболее низких частот[3] небольшие по размерам ГД вовсе непригодны.
Колеблющийся диффузор создаёт в воздухе звуковые волны, воспринимаемые ухом человека. Таким образом, с помощью ГД электрический сигнал звукового диапазона частот с усилителя преобразуется в звук.
Следует повториться, что при воспроизведении наиболее низких частот из частотного диапазона, воспроизводимого динамиком, работает вся поверхность диффузора, а при воспроизведении высших частот из частотного диапазона — только центральная его часть, что располагается над катушкой. Поэтому в широкополосных динамиках часто в центре устраивается металлическая, полимерная или бумажная накладка — купол в целях улучшения воспроизведения высоких частот.
Применения
Описанная классическая конструкция является базовой и может применяться в недорогой технике, там, где не требуется высокое качество звука. Для высококачественного воспроизведения проектируются более сложные и совершенные громкоговорители.
Для создания более качественной аудиосистемы одну или несколько динамических головок помещают в корпус в виде коробки из дерева, либо пластика или металла таким образом, чтобы изолировать лицевую и тыльную поверхности диффузора друг от друга и исключить «перетекание» воздуха вокруг кромки рамы громкоговорителя. Полученное изделие называется акустическая система. Если в акустической системе присутствует встроенный усилитель, такая акустическая система называется активной, в противном случае — пассивной. Создание акустических систем, имеющих максимально чистое, естественное и натуральное звучание — весьма трудоёмкая и сложная задача, так как на конечный результат влияет множество факторов.
Устройство электродинамической головки благодаря свойству обратимости идентично по принципу действия устройству динамического микрофона, и, таким образом, эти устройства могут быть взаимозаменяемыми. Например, во многих конструкциях переговорных устройств, домофонов, и даже в подслушивающих устройствах, некогда монтировавшихся спецслужбами в приёмники проводного радиовещания, в качестве приёмника звука — микрофона могли использоваться динамические головки.
Технические характеристики динамической головки
При определении мощностных параметров головки следует учитывать, что в СССР в разное время они выражались по разному — до 1985 года по ГОСТ 9010, позднее по ОСТ 4.383.001, требования которого ближе к международным нормам.
Основными техническими характеристиками динамической головки являются:
- Тип динамической головки — Полно-диапазонная (широкополосная), низкочастотная, среднечастотная, высокочастотная
- Номинальный диаметр — как правило, внешний диаметр диффузородержателя (рамы). Реже — диаметр подвеса диффузора либо расстояние между противоположными крепёжными отверстиями. Для компрессионных драйверов — диаметр горла рупора.
- Мощность — номинальная, программная (длительная), либо пиковая (краткосрочная) подводимая мощность, которую выдерживает головка до своего разрушения. Головка может быть разрушена и гораздо меньшей мощностью, если динамик нагружается сверх своих механических возможностей на очень низких частотах (например, электронная музыка с большим количеством баса или органная музыка), также разрушение может быть вызвано перегрузкой («клипированием») усилителя мощности.
- Импеданс (номинальное сопротивление) — как правило, динамические головки имеют импеданс 2Ом, 4Ом, 8Ом, 16Ом.
- Частотная характеристика — Измеренная, либо заявленная, выходная характеристика на заданном диапазоне частот при входном сигнале постоянной амплитуды на всём заданном диапазоне. Как правило, указывается предел отклонений характеристики, например, «±3dB».
- Параметры Тиля — Смолла — Набор элеткроакустических параметров, характеризующих головку как колебательную систему.
- Чувствительность — уровень звукового давления, производимый динамической головкой при подаче сигнала мощностью 1 Ватт, измеренное на расстоянии 1 метр от головки.
- Максимальный уровень звукового давления — максимальное давление, которое может развить головка без своего повреждения либо без превышения заданного уровня искажений. Зависит во многом от чувствительности головки и её мощности. Данный параметр приводится, как правило, как измеренный на произвольном (по усмотрению производителя) диапазоне частот и типе сигнала.
История громкоговорителя
Александер Грэм Белл запатентовал первую электродинамическую головку (капсюль) как одну из составных частей своего телефона, в 1876 г. В 1878 г. конструкция была усовершенствована Ве́рнером фон Си́менсом. Никола Тесла в 1881 г. также заявил об изобретении подобного устройства, [1], но не патентовал его. В то же время Томас Эдисон получил британский патент на систему, использовавшую сжатый воздух в качестве механизма усиления звука в его ранних валиковых фонографах (см. сирена (акустика), и в конечном итоге установил обычный металлический рупор, колебания воздуха в котором вызывались мембраной, связанной с иглой. В 1898 г. Х. Шорт запатентовал конструкцию динамической головки, управляемую сжатым воздухом, и затем продал права Чарльзу Парсонсу, получившему ранее 1910 г. еще несколько британских патентов. Несколько компаний, включая Victor Talking Machine Company и Pathe(Пате), выпускали проигрыватели, использующие головки, управляемые сжатым воздухом. Однако подобные устройства (головки косвенного излучения)нашли лишь ограниченное применение ввиду плохого качества звука и неспособностью воспроизводить звуки низкой громкости. Разновидности подобных систем использовались в звукоусилительных установках (для больших площадей, стадионов и т. п.) и значительно реже — другие разновидности — применяемые в промышленности в испытательной технике вибростенды, например, для тестирования космического оборудования на устойчивость к низкочастотным вибрациям, производимым стартующей ракетой.
Современная конструкция головки с подвижной катушкой разработана в 1898 г. Оливером Лоджем. Принцип был запатентован в 1924 г. Честером У. Райсом и Эдвардом У. Келлогом.
Первые ГД с электромагнитами были очень больших размеров, а мощные постоянные магниты — труднодоступны ввиду значительной стоимости. Обмотка электромагнита, называемая полевой, намагничивается за счет тока, проходящего по другой обмотке головки (катушке подмагничивания). Такое включение имеет двоякую роль, ибо выполняет фильтрацию напряжения, питающего усилитель, к которому подключена данная акустическая система. Проходя по обмотке, фон переменного тока усиливается; однако, частоты переменного тока стремятся промодулировать аудиосигнал, поданный на звуковую катушку и складывающийся с слышимым шумом включенного устройства звуковоспроизведения.
Качество акустических звуковоспроизводящих систем до начала 50-х годов XX века было низким. Продолжающееся до сих пор улучшение дизайна корпусов и материалов привело к существенному улучшению качества звуковоспроизведения. Наиболее значительными усовершенствованиями являются: усовершенствование рамы, открытие технологии высокотемпературной адгезии, улучшение технологии изготовления постоянных магнитов, усовершенствование измерительной техники, и наконец проектирование и анализ элементов при помощи компьютера.
Лингвистические аспекты
- В разговорной речи привыкли называть громкоговорителями головки громкоговорителей, что не одно и то же, головку иначе можно назвать звукоизлучателем, но не громкоговорителем, впрочем до 80-х годов прошлого века таких различий в терминологии не существовало
- Головку громкоговорителя (электроакустический преобразователь) называют также термином динамик. В просторечии и жаргоне словом «динамик» нередко называют и громкоговоритель целиком. В компьютерных кругах используется также выражение спикер
- Для термина акустическая система существуют два устаревших синонима, которые тоже когда-то были стандартизованы в качестве терминов — акустический агрегат и звуковая колонка
Номенклатура
Номенклатура советских громкоговорителей
Номенклатура зарубежных громкоговорителей
Примечания
- ↑ наиболее часто встречающаяся форма
- ↑ 20 — 20000 Гц
- ↑ примерно 16—250 Гц
Литература и документация
Литература
Нормативно-техническая документация
Ссылки
См. также
строение динамика (часть 2) / Stereo.ru
Появление динамика
С началом активного использования электричества появилась возможность передавать звуковой сигнал, преобразуя его в электрический и обратно. В разное время изобрели много способов этого преобразования. Среди них — электродинамический, электростатический, изодинамический, ленточный, излучатель Хейла, пьезо и даже плазменный излучатель.
Они работают на разных физических принципах, различаются спецификой применения. Но самым первым все-таки было устройство, реализующее электродинамический принцип. Оно и остается самым распространенным. Динамик, электродинамическая головка, динамический драйвер — все эти термины являются синонимами к одному и тому же изобретению.
Слева — Ханс Эрстед. Справа — первая коммерческая версия электродинамического излучателя (6-дюймовый динамик, стоимость — около $3000 в современном эквиваленте)Физические принципы, на которых работает динамик, основаны на электромагнетизме, открытом Хансом Эрстедом и описанном впоследствии целой плеядой физиков 19-го века. Тот факт, что проводник с током выталкивается магнитным полем, а в проводнике, движущемся в этом поле, наоборот, возникает ток, собственно, и привел к изобретению динамика.
Первое устройство, в котором применены все основные конструктивные принципы современного динамика, было запатентовано в 1898 году Оливером Лоджем после приблизительно тридцати лет самых разных попыток нащупать эффективный способ реализации. А сам динамик, в том виде, к которому мы все привыкли, появился спустя еще приблизительно тридцать лет.
С тех пор принципы его работы и основные элементы конструкции остаются неизменными. При этом, — вот что особенно удивительно, — не проходит и года без информации об очередном революционном усовершенствовании динамика, позволяющего ему работать еще лучше.
Устройство динамика
Любой современный динамик включает в себя каркас [1], который еще называют корзиной или даже пауком. На нем держатся все остальные части конструкции.
В тыльной части корзины крепится магнитная система, которая состоит из кольцевого магнита [2] и магнитного керна [3] — вместе они образуют кольцевой зазор. Этот магнитный зазор, кольцевая щель между двумя магнитами, должна быть минимальной для создания максимально мощного магнитного поля.
В зазоре расположена так называемая голосовая (звуковая) катушка [4], которая может совершать возвратно-поступательные движения под воздействием магнитного поля, поскольку по ней протекает переменный ток, соответствующий по форме воспроизводимым звуковым колебаниям. Она, как правило, состоит из проволоки, покрытой изолирующим лаком и намотанной на тонкостенный цилиндр, который называют каркасом [5] звуковой катушки.
Он крепится к диффузору [6] — тонкостенному элементу конструкции, который, колеблясь, собственно, и воспроизводит звук. Для этой цели диффузор должен иметь возможность двигаться. Для этого установлены так называемые подвесы [7, 8]: верхний (наружный) и нижний. Это шайбы из тонкого и гибкого материала с концентрическими выпуклостями. Благодаря такой форме, подвесы позволяют диффузору двигаться вдоль оси симметрии всей конструкции вперед-назад.
Он делает это потому, что его толкает голосовая катушка, на которую действует электромагнитная сила, пропорциональная силе переменного тока, который подается на катушку по гибким безмоментным проводникам [9]. С другой стороны эти провода заканчиваются клеммами [10], к которым подсоединяется акустический кабель, идущий от усилителя.
Завершает картину пылезащитный колпачок [11], который крепится к диффузору спереди и, что понятно из названия, защищает магнитный зазор от проникновения в него частичек пыли.
Разнообразие динамиков огромно. Они различаются по мощности, рабочему диапазону воспроизводимых частот, сфере применения и по множеству других параметров. Естественно, от этого зависят технологии и материалы, применяемые в производстве каждой из частей. Их мы и рассмотрим по отдельности.
Диффузор
Изначально диффузор делался из целлюлозы — бумаги или картона. Из того же материала выполнялся и пылезащитный колпачок (если он был предусмотрен). Целлюлозные диффузоры очень часто применяются до сих пор. Бумага хороша своим сочетанием легкости и жесткости. Влагоустойчивости, прочности и долговечности ей добавляют с помощью пропитки синтетическими материалами.
В этом смысле хорош пластик, но чисто пластиковый некомпозитный диффузор имеет ряд недостатков. Для их исправления применяются композитные материалы с разнообразными компонентами: от древесных или стеклянных волокон до кевлара или даже графена. Повышенную жесткость имеют металлические диффузоры. Чаще всего они делаются из алюминиевых сплавов.
Одними из лучших параметров обладает бериллий, но, ввиду повышенной стоимости материала и технологий его обработки, такой вариант достаточно дорог. В так называемых купольных высокочастотных динамиках чаще всего применяется ткань с пропиткой, иногда армирующая слой максимально жесткого композита, с жестким наполнителем, вплоть до алмазного порошка.
Важнейшие требования к диффузору — минимум собственных резонансов и максимальная жесткость, при которой становится возможным «поршневой» режим движения диффузора по всей его площади. Эти параметры должны сочетаться с важнейшими требованиями к весу подвижной системы динамика — он должен быть минимальным. Таким образом, качественный диффузор всегда является компромиссом взаимоконфликтующих условий.
Подвес динамика
Внутренний (ближний к магниту) подвес динамика еще называют центрирующей шайбой. Чаще всего эту деталь формуют на прессе с нагреванием из легкой, крепкой на разрыв ткани с эластичной синтетической пропиткой — прочно и подвижно. В некоторых мощных низкочастотных динамиках применяются две центрирующие шайбы, расположенные одна за другой.
С внешним подвесом все немного сложнее. Изначально он делался в виде концентрических волн (гофров) по внешнему краю бумажного диффузора. Так в некоторых случаях поступают и сейчас, добавляя синтетическую пропитку зоны гофров. Для больших амплитуд колебаний внешний подвес делают из резины, чаще всего это — искусственный бутадиеновый каучук. Резиновый подвес в сечении, в большинстве случаев, представляет собой выпуклую дугу. Есть варианты и «многоволновых» резиновых подвесов, либо применения других профилей, в том числе и переменных по углу.
Оба подвеса должны обеспечить строго плоско-параллельное возвратно-поступательное движение всей подвижной системы динамика с минимальными отклонениями в сторону от его оси.
Звуковая (голосовая) катушка
Эта катушка, работающая в магнитном зазоре динамика, намотана на каркас — цилиндр, который часто делается из плотной бумаги. Для каркаса также применяется устойчивый к нагреву пластик: каптон, текстолит, либо другие композитные материалы. Для большей плотности и температурной устойчивости (при серьезной нагрузке, т. е. громкости, катушка нагревается) используют сплавы на основе алюминия и даже титан.
Проволока, которой наматывается голосовая катушка, чаще всего, медная. Алюминиевая проволока легче, и это в данном случае — плюс, но она имеет свои недостатки (большее электрическое сопротивление при меньшей температурной устойчивости) и применяется реже. Есть вариант с биметаллической алюминиевой проволокой с медным покрытием, что улучшает проводимость.
Для более плотного расположения витков проволоку иногда делают в сечении прямоугольной либо шестиугольной. Для получения нескольких вариантов сопротивления катушки при параллельном или последовательном соединении ее частей или использования раздельных усилителей, звуковая катушка, чаще всего в низкочастотных динамиках, может разделяться на отдельные секции, намотанные на общем каркасе.
Для лучшего охлаждения голосовой катушки магнитный зазор в некоторых высокочастотных динамиках заполняется специальной жидкостью с наполнителем из мелкодисперсного магнитного порошка. Это повышает эффективность системы и улучшает отвод тепла.
Магнитная система
Эффективность магнитной системы динамика определяется, в первую очередь, материалом магнита. Самый распространенный — феррит. В середине прошлого века были распространены магниты из сплава AlNiCo (железо-алюминий-никель-кобальт), в отдельных случаях этот вариант до сих пор применяется. В новейший исторический период все большее распространение получают неодимовые магниты, создающие гораздо более сильное магнитное поле. Проблемой здесь стало получение неодимовой заготовки нужных размеров: неодим — материал труднообрабатываемый. Кроме того, стоимость неодимовых магнитов в последнее время растет.
Корзина динамика
Самый распространенный и максимально технологичный вариант корзины, или каркаса динамика — штампованная деталь из мягкой стали. Каркасы небольшого размера могут быть выполнены из пластика. Более совершенное, прочное и, что самое главное, точное в своей геометрии изделие получают методом литья, чаще всего из алюминия, с последующей обработкой на металлорежущих станках.
Важно понимать: чтобы добиться минимального магнитного зазора, звуковую катушку, расположенную в этом зазоре, нужно заставить двигаться, не задевая его краев. Для этого ее движение должно быть идеально соосным магнитному зазору вдоль всей возможной амплитуды колебаний. Расположение катушки в магнитном зазоре должно быть идеально симметричным. Это накладывает высокие требования на точность изготовления и сборки всех частей.
Все компоненты динамика соединяются с помощью клея на специальном оборудовании.
Каждый динамик, согласно примененным в нем материалам и технологиям, размерам, весу, электрическим и механическим параметрам, имеет свое в точности определенное назначение. О этом предназначении и обо всем, что с ним связано — в следующей части.
Продолжение следует…
Другие материалы цикла «Акустические системы»:
Акустические системы: поговорим о звуке (часть 1)
Динамика — это… Что такое Динамика?
Содержание
1. Динамика в разных науках
— В физике
— В астрономии
— В науках о Земле
— В биологии
— В технике
— В музыке
2. Динамика в физике
3. Ряды динамики
4. Газовая динамика
Динамика – это состояние движения, ход развития, изменение какого-либо явления под влиянием действующих на него факторов.
Динамика в разных науках
В физике
Динамика
Аэрогазодинамика
Гидродинамика
Молекулярная динамика
Термодинамика
Нелинейная динамика
В астрономии
Звёздная динамика
В науках о Земле
Геодинамика
Динамика подземных вод
Динамика русловых потоков
В биологии
Популяционная динамика
Популяционная динамика старения
Динамика растительности (синдинамика) — процесс постепенной трансформации растительных сообществ под действием внешних и внутренних факторов.
В технике
Динамика машин и механизмов
Динамика сооружений
В музыке
Динамика в музыке — совокупность понятий и нотных обозначений, связанных с оттенками громкости звучания.
Динамика в физике
Динамика (греч. δύναμις — сила) — раздел механики, в котором изучаются причины возникновения механического движения. Динамика оперирует такими понятиями, как масса, сила, импульс, энергия.
Динамика, базирующаяся на законах Ньютона, называется классической динамикой. Классическая динамика описывает движения объектов со скоростями от долей миллиметров в секунду до километров в секунду.
Однако эти методы перестают быть справедливыми для движения объектов очень малых размеров (элементарные частицы) и при движениях со скоростями, близкими к скорости света. Такие движения подчиняются другим законам.
С помощью законов динамики изучается также движение сплошной среды, т. е. упруго и пластически деформируемых тел, жидкостей и газов.
В результате применения методов динамики к изучению движения конкретных объектов возник ряд специальных дисциплин: небесная механика, баллистика, динамика корабля, самолёта и т. п.
Основная задача динамики
Прямая задача динамики: по заданным силам определить характер движения тела.
Обратная задача динамики: по заданному характеру движения определить действующие на тело силы.
Законы Ньютона
Классическая динамика основана на трёх основных законах Ньютона:
1-й: Существуют такие системы отсчета, относительно которых поступательно движущееся тело сохраняет свою скорость постоянной, если на него не действуют другие тела или их действие скомпенсировано.
2-й: В инерциальной системе отсчета сумма всех сил, действующих на тело, равна произведению массы этого тела на векторное ускорение этого же тела (действие на тело силы, проявляется в сообщении ему ускорения).
3-й: Тела действуют друг на друга силами равными по модулю и противоположными по направлению
Если при этом рассматриваются взаимодействующие материальные точки, то обе эти силы действуют вдоль прямой, их соединяющей. Это приводит к тому, что суммарный момент импульса системы состоящей из двух материальных точек в процессе взаимодействия остается неизменным. Таким образом, из второго и третьего законов Ньютона могут быть получены законы сохранения импульса и момента импульса
Законы Ньютона в неинерциальных системах отсчета
Существование инерциальных систем отсчета лишь постулируется первым законом Ньютона. Реальные системы отсчета, связанные, например, с Землей или с Солнцем, не обладают в полной мере свойством инерциальности в силу их кругового движения. Вообще говоря, экспериментально доказать существование ИСО невозможно, поскольку для этого необходимо наличие свободного тела (тела на которое не действуют никакие силы), а то, что тело является свободным, может быть показано лишь в ИСО. Описание же движения в неинерциальных системах отсчета, движущихся с ускорением относительно инерциальных, требует введения т. н. фиктивных сил таких как сила инерции, центробежная сила или сила Кориолиса.
Ряды динамики
Ряды динамики, статистические ряды, характеризующие изменение (развитие) социально-экономических явлений во времени. Например, данные о производстве электричества в СССР за период 1928—73 представляют Ряды динамики
Производство электричества в СССР, млрд. кетЧч
1928 5.0
1932 13.5
1937 36.2
1940 48.3
1950 91.2
1960 292
1970 741
1973 915
Последовательно расположенные во времени статистические данные называются уровнями Ряды динамики Они должны быть сопоставимы между собой, особенно в территориальном разрезе, по кругу охватываемых объектов, методике расчёта, критической дате, структуре. Уровни Ряды динамики могут характеризовать величину явлении за некоторые отрезки времени (интегральные Ряды динамики) или на определённую дату (моментные Ряды динамики). Анализ Ряды динамики состоит в определении скорости и интенсивности развития рассматриваемого явления, нахождении основные тенденции его развития (тренда), измерении колеблемости уровней, установлении связи с развитием др. явлений, проведении сравнительного анализа развития разных стран или районов. Для анализа Ряды динамики определяются статистические показатели: абсолютные приросты, темпы роста и прироста, средние уровни ряда, средние абсолютные приросты, средние темпы роста и прироста. Абсолютным приростом называют разность между последующим и предыдущим уровнями, а темпом роста — их отношение. Темп прироста составит разность между темпом роста и 1 (в коэффициенте) или 100%. Средний уровень ряда для интервальных рядов определяется как средняя арифметическая, а для моментных рядов — по формуле:
где — средний уровень, y1. — начальный, а уп — конечный, n — число уровней. Средний абсолютный прирост определяется как частное от деления абсолютного прироста за весь период на число единиц времени в периоде. Средний темп роста вычисляется как средняя геометрическая темпов роста за отдельные отрезки времени или как корень, степень которого определяется числом периодов, а под корнем берётся темп роста за весь период.
Определение тренда ведётся выравниванием статистическим. Колеблемость уровней Ряды динамики измеряется средней из квадратов отклонений фактических уровней от тренда. Для установления связи развития данного явления с другими пользуются методом корреляции Ряды динамики, отличающимся от обычного возможностью автокорреляции, авторегрессии, переменной корреляции и временного лага. Для сравнительного анализа разных стран (районов) часто используется приведение к одному основанию, состоящее в определении темпов роста для двух или более стран за одинаковые отрезки времени. Сравнительный анализ развития лучше вести с расчётом показателей на душу населения. Всесторонний анализ Ряды динамики позволяет выявить закономерности развития отражаемых в них явлений.
Газовая динамика
Газовая динамика, раздел гидро-аэромеханики, в котором изучается движение сжимаемых газообразных и жидких сред и их взаимодействие с твёрдыми телами. Как часть физики, Газовая динамика связана с термодинамикой и акустикой.
Свойство сжимаемости состоит в способности вещества изменять свой первоначальный объём под действием перепада давления или при изменении температуры. Поэтому сжимаемость становится существенной лишь при больших скоростях движения среды, соизмеримых со скоростью распространения звука в этой среде и превосходящих её, когда в среде возникают большие перепады давления и большие градиенты температуры. Современная газовая динамика изучает также течения газов при высоких температурах, сопровождающиеся химическими (диссоциация, горение и др. химические реакции) и физическими (ионизация, излучение) процессами. Изучение движения газов при таких условиях, когда газ нельзя считать сплошной средой, а необходимо рассматривать взаимодействие составляющих его молекул между собой и с твёрдыми телами, относится к области аэродинамики разреженных газов, основанной на молекулярно-кинетической теории газов. Динамика сжимаемого газа при малых скоростях движения больших воздушных масс в атмосфере составляет основу динамической метеорологии. Газовая динамика исторически возникла как дальнейшее развитие и обобщение аэродинамики, поэтому часто говорят о единой науке — аэрогазодинамике.
Теоретическую основу газовая динамика составляет применение основных законов механики и термодинамики к движущемуся объёму сжимаемого газа. Навье — Стокса уравнения, описывающие движение вязкого сжимаемого газа, были получены в 1-й половине 19 в. Немецкий учёный Б.Риман (1860), английский — У. Ранкин (1870), французский -А. Гюгоньо (1887) исследовали распространение в газе ударных волн, которые возникают только в сжимаемых средах и движутся со скоростью, превышающей скорость распространения в них звуковых волн. Риман создал также основы теории неустановившихся движений газа, т. е. таких движений, когда параметры газового потока в каждой его точке изменяются с течением времени.
Фундаментальную роль в формировании Газовая динамика как самостоятельной науки сыграла опубликована в 1902 работа С. А. Чаплыгина «О газовых струях». Развитые в ней методы решения газодинамических задач получили впоследствии широкое распространение и обобщение. Плодотворный метод решения задач Газовая динамика предложили в 1908 нем. учёные Л. Прандтль и Т. Майер, исследовавшие частный случай течения газа с непрерывным увеличением скорости. В 1922 в работе «Опыт гидромеханики сжимаемой жидкости» советский учёный А. А. Фридман заложил основы динамической метеорологии. В 1929 нем. учёными Л. Прандтлем и А. Буземаном был разработан эффективный численно-графический метод решения широкого класса газодинамических задач, распространённый в 1934 сов. учёным Ф. И. Франклем на более сложные случаи течения газа. Эти методы широко применяются при решении задач Газовая динамика с помощью ЭВМ. В 1921 в СССР была создана, а в 1927 оформилась как научное учреждение газодинамическая лаборатория, деятельность которой совместно с Группой изучения реактивного движения (1932) заложила основы сов. ракетной техники.
Как самостоятельный раздел гидроаэромеханики Газовая динамика существует с 1930, когда рост скоростей в авиации потребовал серьёзного исследования влияния сжимаемости при изучении движения воздуха. В 1935 в Риме состоялся 1-й международный конгресс по Газовая динамика Интенсивное развитие Газовая динамика началось во время и особенно после окончания 2-й мировой войны 1939-45 в связи с широким использованием Газовая динамика в технике: применение реактивной авиации, ракетного оружия, ракетных и воздушно-реактивных двигателей; полёты самолётов и снарядов со сверхзвуковыми скоростями; создание атомных бомб, взрыв которых влечёт за собой распространение сильных взрывных и ударных волн. В этот период Газовая динамика выдающуюся роль сыграли исследования советских учёных С. А. Христиановича, А. А. Дородницына, Л. И. Седова, Г. И. Петрова, Г. Г. Чёрного и др., немецких учёных Прандтля, Буземана, английских учёных Дж. Тейлора, Дж. Лайтхилла, американских учёных Т. Кармана, А. Ферри, У. Хейса, китайского учёного Цянь Сюэ-сэня, а также учёных др. Стран.
Задачи газовой динамики при проектировании разнообразных аппаратов, двигателей и газовых машин состоят в определении сил давления и трения, температуры и теплового потока в любой точке поверхности тела или канала, омываемых газом, в любой момент времени. При исследовании распространения газовых струй, взрывных и ударных волн, горения и детонации методами Газовая динамика определяются давление, температура и др. параметры газа во всей области распространения. Изучение поставленных техникой сложных задач превратило современную газовою динамику в науку о движении произвольных смесей газов, которые могут содержать также твёрдые и жидкие частицы (например, выхлопные газы ракетных двигателей на жидком или твёрдом топливе), причём параметры, характеризующие состояние этих газов (давление, температура, плотность, электропроводность и др.), могут изменяться в широких пределах.
Для развития совресенной газовой динамики характерно неразрывное сочетание теоретических методов, использования ЭВМ и постановки сложных аэродинамических и физических экспериментов. Теоретические представления, частично опирающиеся на экспериментальные данные, позволяют описать с помощью уравнений движение газовых смесей сложного состава, в том числе многофазных смесей при наличии физико-химических превращений. Методами прикладной математики разрабатываются эффективные способы решения этих уравнений на ЭВМ. Наконец, из экспериментальных данных определяются необходимые значения физических и химических характеристик, свойственных изучаемой среде и рассматриваемым процессам (коэффициент вязкости и теплопроводности, скорости химических реакций, времена релаксации и др.).
Многие задачи, поставленные современной техникой перед газовой динамикой, пока не могут быть решены расчётно-теоретическими методами, в этих случаях широко пользуются газодинамическими экспериментами, поставленными на основе подобия теории и законов гидродинамического и аэродинамического моделирования. Газодинамические эксперименты в аэрогазодинамических лабораториях проводятся в сверхзвуковых и гиперзвуковых аэродинамических трубах, на баллистических установках, в ударных и импульсных трубах и на др. газодинамических установках специального назначения.
Законами газовой динамике широко пользуются во внешней и внутренней баллистике, при изучении таких явлений, как взрыв, горение, детонация, конденсация в движущемся потоке. Прикладная газовая динамика, в которой обычно применяются упрощённые теоретические представления об осреднённых по поперечному сечению параметрах газового потока и основные закономерности движения, найденные экспериментальным путём, используется при расчёте компрессоров и турбин, сопел и диффузоров, ракетных двигателей, аэродинамических труб, эжекторов, газопроводов и многих др. технических устройств.
Газодинамические исследования ведутся в тех же научных учреждениях, что и исследования по аэродинамике, а результаты их публикуются в тех же научных журналах и сборниках.
Источники
ru.wikipedia.org Википедия – свободная энциклопедия
bse.sci-lib.com Большая Советская энциклопедия
16 материалов о том, как устроены динамики и колонки / Блог компании Аудиомания / Хабр
Это — новый дайджест c материалами из «Мир Hi-Fi». Мы собрали статьи об устройстве акустических систем и проектировании колонок. Под катом читайте — какую роль выполняет магнит в динамике, как создают DIY-акустику, как выбрать катушку индуктивности.
Фото Audiomania / Инженерная комната в офисе на Барабанном
Что у динамиков внутри
- Что есть что: динамические головки. Первую электродинамическую головку, которая походит на современные устройства, запатентовали еще в 1925 году. Эта статья о том, что изменилось с тех пор и чем отличается конструкция динамиков для воспроизведения низких, средних и высоких частот. Вы узнаете, из чего делают каждую деталь головки и с какой целью в динамиках используют золото и алмазы.
- Как выбрать катушку индуктивности. Материал о том, чем отличаются разные катушки индуктивности и какую из них выбрать для решения той или иной задачи. Говорим о разных их видах: с пропиткой и без, из цельной фольги и с сердечниками. Расскажем, зачем катушки покрывают лаком и почему лучший сердечник — воздух.
- Лига Звука: как восстановить винтажные громкоговорители. Материал посвящен «старению» громкоговорителей. Говорим о том, почему винтажные динамики сложно «воскресить» без участия производителя и какой их компонент считается самым слабым звеном (спойлер — это центрирующая шайба, которая служит для точной подгонки звуковой катушки). .
Кто и как производит акустические системы
- Arslab: доступный Hi-End. Основатели бренда Артем Фаермарк и Юрий Фомин поведали, на какие компромиссы они идут, чтобы сохранить цену на Hi-End-системы доступной. Рассказ о том, на каких деталях аудиосистемы нельзя экономить и как вывести на рынок новый продукт.
- О создании Hi-End-колонок — интервью с Юрием Фоминым из Arslab. В этом интервью Юрий Станиславович объяснил свой подход к разработке акустических систем. Главный конструктор Arslab рассказал, как появилась идея создания бренда, почему большое разнообразие корпусов в линейке — не всегда плюс и почему он считает, что аудиосистема не должна «приукрашать» музыку.
- Как в Monitor Audio разрабатывают новую акустику. Главный разработчик британского бренда акустики Monitor Audio описал, как в компании с нуля создают новую линейку колонок. Вы узнаете, как дизайнеры Monitor Audio изучают потребности клиентов и как тестируют прототипы аудиосистемы. Также статья рассказывает, как разработчики создавали колонку, звучание которой почти не меняется даже в акустически «неудачных» точках квартиры.
- Penaudio: Истинный финский звук. Это история финского производителя аудиосистем Penaudio. Создатель бренда Сами Пенттила поделился, почему колонки Penaudio воспроизводят ультразвуковые частоты и на звучание каких музыкальных инструментов он ориентируется при разработке аудиосистем. Также читайте о том, какие материалы используются в акустике бренда.
- Заметки с фабрики, где делают акустику Arslab и Penaudio. Фотоэкскурсия по фабрике, на которой изготавливают корпуса и собирают готовые акустические системы этих двух брендов. Вы также узнаете, почему повышение затрат на производство Hi-End-акустики не всегда приводит к увеличению качества звучания систем.
Как устроены колонки
- Азы акустики: типы акустического оформления колонок. Акустическое оформление динамика определяет корпус колонки, в который помещают громкоговоритель. Корпус может быть устроен по-разному: от простого закрытого ящика до сложной конструкции с вырезанным в дереве лабиринтом. Это статья о различиях в звучании разных видов корпусов и необычных способах акустического оформления: контрапертурных системах с горизонтальным расположением динамиков и рупорных конструкциях.
Фото Audiomania / Инженерная комната в офисе на Барабанном
- Как устроены сабвуферы. В этом материале мы поговорим о том, как разные виды акустического оформления влияют на звучание сабвуфера. Также поделимся практическими советами о том, куда установить сабвуфер, как его настроить и как убедиться, что ваша музыка не будет мешать соседям по дому.
- Отсекая лишнее: о видах фильтров в акустических системах. Вы узнаете о разных схемах фильтров и о том, какие из них используются для высоких, средних и низких частот. В материале приведены электрические схемы коррекции частотных характеристик акустической системы: подавитель пиков, компенсатор «провалов» и Г-образный аттенюатор.
- Как устроен конструктор акустических систем. Транскрипт подкаста «Звук», в котором Юрий Станиславович Фомин — инженер с многолетним опытом создания акустических систем и главный технический специалист бренда Arslab — рассказывает о конструкторе акустической системы Audiocore Kit. Интервью о том, как зародилась идея создать DIY-комплект и какие в этом преимущества для покупателей. Здесь же вы найдете ссылки на руководство по сборке Audiocore Kit и обзоры конструктора.
Наш Telegram-канал — о звуке и аудиоаппаратуре в микроформате:
Честная Черная пятница Аудиомании
Музыка для продуктивной работы
Наш гид покупателя: полочные колонки vs напольные
Гид для новичка: что важно знать про амбушюры наушников
С 22 по 25 ноября в «Аудиомании» проходит Черная пятница.
В акции участвует несколько сотен товаров со скидками до 70%. На распродаже представлена самая разная аудиоаппаратура: от наушников и портативных гаджетов до Hi-Fi-аудиосистем.
Значение слова «Динамика» в 10 онлайн словарях Даль, Ожегов, Ефремова и др.
Поделиться значением слова:ж. греч. наука о движении тел, о силах двигающих. Механика делится на статику и динамику. Динамический, относящийся к динамике; основанный не на отвлеченном понятии о теле, о веществе, а на деятельных силах тела. Динамическое учение, в физике противоположно атоми(сти)ческому, отвергая образование тел из неделимых атомов и объясняя образование их взаимным противодействием и равновесием сил. Динамик, динамист м. последователь динамической школы. Динамометр м. снаряд для из мерения силы, силомер.
ДИНАМИКА, -и, ж. 1. Раздел механики, изучающий движение тел под действием приложенных к ним сил. 2. Ход развития, изменения какого-н. явления (книжн.). Д. общественного развития. 3. Движение, действие, развитие. В пьесе много динамики. || прил. динамический, -ая, -ое (ко 2 знач.).
ДИНА́МИКА, динамики, мн. нет, ·жен. (от ·греч. dynamikos — действующий).
1. Отдел механики, изучающий законы движения тел в зависимости от действующих на них сил (мех.).
2. Ход развития, изменения какого-нибудь явления под влиянием действующих на него сил; ант. статика» title=’что такое статика, значение слова статика в словаре Ушакова’>статика во 2 ·знач. (научн.). Динамика социального процесса.
3. перен. Обилие движения, действия (·книж. ). В пьесе много динамики.
кинетика
в музыке — различной степени силы звучания, громкости и их изменения. Обозначаются итальянскими терминами: пиано (piano, сокр. p) — тихо; форте (forte, сокр. f) — громко; крещендо (crescendo) — постепенно усиливая; диминуэндо (diminuendo) — постепенно затихая и др.—(от греч. dynamis — сила), раздел механики, в котором изучается движение тел под действием приложенных к ним сил. Основа динамики — Ньютона законы механики.
газодинамика, макродинамика
дина́мика,
дина́мики,
дина́мики,
дина́мик,
дина́мике,
дина́микам,
дина́мику,
дина́мики,
дина́микой,
дина́микою,
дина́миками,
дина́мике,
дина́миках
и, мн. нет, ж.
1. Раздел механики, изучающий движение тел в зависимости от действующих на них сил.||Ср. КИНЕМАТИКА» title=’КИНЕМАТИКА, КИНЕМАТИКА это, что такое КИНЕМАТИКА, КИНЕМАТИКА толкование’>КИНЕМАТИКА, КИНЕТИКА» title=’КИНЕТИКА, КИНЕТИКА это, что такое КИНЕТИКА, КИНЕТИКА толкование’>КИНЕТИКА, СТАТИКА» title=’СТАТИКА, СТАТИКА это, что такое СТАТИКА, СТАТИКА толкование’>СТАТИКА.
2. Состояние движения, ход развития какого-нибудь явления, процесса. Д. экономического развития стра-ны. Динамический — относящийся к динамике.
3. Движение, действие, развитие. Исследовать деятельность сердца в динамике.
Определение динамиков
Динамики — одно из наиболее распространенных устройств вывода, используемых в компьютерных системах. Некоторые колонки предназначены специально для работы с компьютерами, а другие можно подключить к любой звуковой системе. Независимо от конструкции, динамики предназначены для воспроизведения звука, который может слышать слушатель.
Динамики — это преобразователи, преобразующие электромагнитные волны в звуковые. Громкоговорители принимают аудиовход от такого устройства, как компьютер или аудиоприемник.Этот вход может быть в аналоговой или цифровой форме. Аналоговые колонки просто усиливают аналоговые электромагнитные волны в звуковые волны. Поскольку звуковые волны производятся в аналоговой форме, цифровые динамики должны сначала преобразовать цифровой входной сигнал в аналоговый сигнал, а затем генерировать звуковые волны.
Звук, производимый динамиками, определяется частотой и амплитудой. Частота определяет, насколько высока или низка высота звука. Например, голос певца-сопрано издает высокочастотные звуковые волны, а бас-гитара или бас-барабан генерируют звуки в низкочастотном диапазоне.Способность акустической системы точно воспроизводить звуковые частоты — хороший показатель того, насколько чистым будет звук. Многие динамики включают несколько диффузоров для разных частотных диапазонов, что помогает воспроизводить более точные звуки для каждого диапазона. Двухполосные динамики обычно имеют высокочастотный и среднечастотный динамик, в то время как трехполосные динамики имеют высокочастотный динамик, среднечастотный динамик и сабвуфер.
Амплитуда или громкость определяется изменением давления воздуха, создаваемым звуковыми волнами динамиков.Таким образом, когда вы включаете громкоговорители, вы фактически увеличиваете давление воздуха создаваемых ими звуковых волн. Поскольку сигнал, создаваемый некоторыми источниками звука, не очень высокий (например, звуковая карта компьютера), его, возможно, необходимо усилить динамиками. Следовательно, большинство внешних компьютерных динамиков имеют усиление, то есть они используют электричество для усиления сигнала. Динамики, которые могут усиливать входной звук, часто называют активными динамиками. Обычно вы можете определить, активен ли динамик, если он оснащен регулятором громкости или может быть подключен к электрической розетке.Динамики, не имеющие внутреннего усиления, называются пассивными динамиками. Поскольку эти громкоговорители не усиливают аудиосигнал, они требуют высокого уровня входного аудиосигнала, который может быть произведен усилителем звука.
Динамики обычно поставляются парами, что позволяет воспроизводить стереозвук. Это означает, что левый и правый динамики передают звук по двум совершенно отдельным каналам. При использовании двух динамиков музыка звучит намного естественнее, поскольку наши уши привыкли слышать звуки слева и справа одновременно.Системы объемного звучания могут включать от четырех до семи динамиков (плюс сабвуфер), что создает еще более реалистичное впечатление.
Обновлено: 27 февраля 2010 г.
TechTerms — Компьютерный словарь технических терминов
Эта страница содержит техническое определение динамиков. Он объясняет в компьютерной терминологии, что означают спикеры, и является одним из многих терминов, связанных с оборудованием в словаре TechTerms.
Все определения на веб-сайте TechTerms составлены так, чтобы быть технически точными, но также простыми для понимания.Если вы найдете это определение Speakers полезным, вы можете сослаться на него, используя приведенные выше ссылки для цитирования. Если вы считаете, что термин следует обновить или добавить в словарь TechTerms, напишите в TechTerms!
.Простая английская Википедия, бесплатная энциклопедия
Дешевый динамик . Обычно это небольшие радиоприемники.Громкоговоритель , который также называют громкоговорителем или динамиком , — это элемент, который используется для создания звука в радиоприемниках, телевизорах и системах усилителя электрических музыкальных инструментов.
В громкоговорителях используются как электрические, так и механические принципы для преобразования электрического сигнала от радио, телевизора или электрического музыкального инструмента в звук.Чтобы громкоговоритель воспроизводил звук, сигнал от радио, телевизора или электрического музыкального инструмента должен быть подключен к электронному усилителю.
Громкоговорители обычно изготавливаются из жесткого бумажного конуса, катушки из тонкой медной проволоки и круглого магнита. Конус, медная проволока и магнит обычно устанавливаются в деревянный шкаф прямоугольной формы. Катушка из медной проволоки движется вперед и назад, когда через нее проходит электрический сигнал. Катушка из медной проволоки и магнит заставляют жесткий бумажный конус вибрировать и воспроизводить звуки.
Внутри громкоговорителя может быть аудио кроссовер.
Некоторые громкоговорители предназначены для низкочастотных звуков, например, громкоговорители с низкочастотным динамиком или сабвуферные динамики . Другие громкоговорители, которые называются высокочастотными динамиками , предназначены для воспроизведения высоких звуков (например, свистка или пения птиц).
Громкоговорители для электрических музыкальных инструментов обычно намного прочнее и тяжелее, чем динамики для радио или телевизоров.Их основная функция — преобразовывать подаваемые электрические сигналы в звуковые.
Александр Грэм Белл изобрел первый звуковой громкоговоритель в 1876 году. Белл изобрел громкоговоритель, потому что ему нужно было устройство, которое усиливало бы звук для телефона. В 1878 году изобретатель Вернер фон Сименс из Германии запатентовал усовершенствованный тип электродинамического громкоговорителя, в котором еще не было усилителя. [1] .
.13 лучших мест для поиска англоговорящего партнера в Интернете
Сегодня вы будете говорить сотни или тысячи слов.
Сколько из этих слов будет в английском?
Ваш ответ «немного»?
Тогда вы забываете об одном из лучших способов выучить английский: на практике .
Практика разговорной речи по-английски поможет вам научиться говорить более свободно, чувствовать себя более уверенно и получить практический опыт использования всех слов и грамматики, которые вы выучили.Это важный шаг в процессе обучения!
Вы можете сказать: «Но мне не с кем тренироваться!»
Конечно же! Тысячи людей могут помочь вам попрактиковаться в разговорном английском, и все они у вас под рукой. Вы можете найти их все прямо здесь, в Интернете.
Вот несколько отличных веб-сайтов, где вы можете найти собеседника, где бы вы ни жили.
Загрузить: Эта запись в блоге доступна в виде удобного портативного PDF-файла, который вы можете можно взять куда угодно.Щелкните здесь, чтобы получить копию. (Скачать)
1. Skype Tutors
Цена: Зависит от учителя, но обычно это не бесплатно.
Что это такое: Многие учителя английского и английского языков используют Skype для обучения изучающих английский язык через Интернет. Если вы не знакомы с этим, Skype — это программа, которая позволяет вам общаться с людьми с помощью текста, голоса или видео. Это немного похоже на использование видеотелефона, и это очень удобно, когда учитель не живет рядом с вами.
Многие люди используют Skype для обучения, и может потребоваться некоторое время, чтобы найти учителя, который идеально подходит для вас. Preply , , например, предлагает на выбор много разных учителей, поэтому вы можете просмотреть множество вариантов, прежде чем сделать свой выбор. Вы также можете найти частного репетитора на их личных сайтах, таких как этот.
Цена: Бесплатно на Наблюдать (смотреть). От 19 до 45 долларов в месяц за участие, в зависимости от выбранного вами уровня членства.Стоимость услуг частного репетитора варьируется.
Что это такое: Skype — не единственное место, где вы можете найти частных репетиторов в Интернете. Verbling предлагает широкий выбор репетиторов по разным ценам и для разных уровней подготовки. Verbling отбирает учителей вручную, и вы можете просмотреть вступительное видео каждого из них, прежде чем сделать свой выбор.
Вы также можете посмотреть некоторые запланированные онлайн-занятия, подписавшись на них. Иногда вы можете просто присоединиться к классу, если класс находится на сеансе, когда вы посещаете веб-сайт.
3. Голосовой чат видеоигры
Цена: Бесплатно, не считая цены на игру.
Что это: Вы играете в видеоигры на своем ПК или на консоли, такой как Xbox или PlayStation? Угадайте, у вас уже есть англоговорящие партнеры! Многие игры в наши дни имеют встроенные голосовые чаты, поэтому вы можете разговаривать с другими, используя гарнитуру с микрофоном. Не бойтесь участвовать в беседах.
На самом деле чат в видеоиграх должен быть проще, чем разговоры в реальном мире, потому что никто не знает, кто вы.Вы можете свободно совершать ошибки, потому что вам больше никогда не придется с ними разговаривать, если вы этого не хотите.
Помните, что здесь вы можете не выучить идеальную грамматику, но вы сможете услышать, как носители языка говорят естественно. Также имейте в виду, что в некоторых видеоиграх (например, в шутерах типа «Call of Duty») много ругательств в голосовом чате, и не все милы. Но есть много отличных игроков, которые хотели бы помочь вам и весело провести время, играя в игры, пока вы болтаете.
4.Физические встречи
Цена: Зависит от того, чем вы занимаетесь. Бронирование проживания с AirBnb будет стоить больше, чем (бесплатная) встреча в местном парке.
Что это такое: Иметь собеседника через Интернет — это хорошо, но еще приятнее завести нового друга лично. Окружите себя англоговорящими, если можете! Найдите группу людей, говорящих по-английски и имеющих то же хобби, что и вы, или найдите других людей, которые хотят выучить английский.
Вы можете использовать веб-сайт Meetup , чтобы найти группу людей, которые встречаются рядом с вами.Есть даже встречи для людей, которые хотят обменяться языками. На языковом обмене вы будете учить кого-то своему родному языку, а они научат вас английскому, как этот в Нью-Йорке.
Если вы планируете поехать куда-нибудь, где английский является распространенным языком, вместо того, чтобы покупать отель, попробуйте вместо этого сайты, такие как AirBnb или Couchsurfing . Вы сможете встретиться и поговорить с реальными людьми и, возможно, даже завести новых англоговорящих друзей.
Цена: Бесплатно.
Что это такое: Свободно за 3 месяца — полезный веб-сайт с множеством советов и помощью для людей, изучающих новый язык. Однако лучшая часть веб-сайта — это сообщество. Посетите форум языкового обмена, и вы найдете множество людей, которые хотят найти нового собеседника. Вы можете найти кого-то вроде вас, изучающего английский язык, или носителя английского языка, изучающего ваш родной язык.
Цена: Зависит от инструктора.
Что это такое: Wyzant — это место, где можно найти надежного профессионального репетитора английского языка, который живет рядом с вами. (Просто имейте в виду, что в настоящее время это доступно только в Соединенных Штатах.)
Если вы находитесь в США, вы можете найти репетиторов английского языка по всей стране, которые специализируются на преподавании английского языка как иностранного. И вы даже найдете репетиторов, которые специализируются на грамматике английского языка и письме на английском языке.
Вы можете найти репетитора, с которым сможете встретиться в Интернете, но основная цель — это личное обучение.Вы сможете встретиться со своим наставником лично, в местной библиотеке, кафе, парке или даже у себя дома!
Цена: Бесплатно.
Что это такое: Еще до появления Интернета у людей были «друзья по переписке» или друзья, которые жили далеко и общались друг с другом, писая письма. Conversation Exchange позволяет найти друга по переписке, которому можно писать на английском.
Более того, веб-сайт поможет вам найти людей, с которыми можно поговорить в голосовом чате, или даже носителей английского языка, которые живут рядом с вами.
Цена: Бесплатное посещение в качестве гостя. Каждый клуб имеет свои собственные взносы, если вы решите присоединиться как член. Цена варьируется для каждого клуба.
Что это такое: Клуб тостмастеров — это место, где люди могут научиться публичным выступлениям. Это не организация, изучающая английский язык, а, скорее, организация общей практики говорения.
Здесь каждый может научиться и практиковаться в разговорной речи в присутствии других. Это отличное место, чтобы почувствовать себя увереннее, разговаривая с людьми на английском языке.В Интернете есть видеоролики, которые вы можете проверить, чтобы убедиться, что это тот вид разговорной практики, который вам нужен, и есть клубы по всему миру. Найдите ближайшего к вам, посетив эту страницу.
Цена: Бесплатно.
Что это такое: Если вы не хотите загружать или устанавливать какие-либо специальные программы для голосового и видеочата, вы можете просто зарегистрироваться на Go Speaky. На этом веб-сайте есть встроенный видеочат прямо на веб-сайте, поэтому вы можете находить людей и разговаривать с ними, не выходя из браузера.
Go Speaky подбирает людей на основе схожих интересов, поэтому есть большая вероятность, что у вас будет что-то общее с говорящими партнерами, которых вы найдете здесь.
Цена: Базовое членство бесплатно. Цены на премиум-членство различаются.
Что это такое: В Busuu более 50 миллионов носителей языка, любой из которых может стать вашим следующим собеседником. Busuu хорошо известен в сообществе, изучающем языки, и может связать вас с собеседником с помощью подробного поиска.
Найдите говорящего по-английски, изучающего ваш язык, или найдите другого изучающего английский язык, с которым можно будет попрактиковаться в английском — решать вам.
Цена: Бесплатно.
Что это такое: С тысячами участников Lingoglobe предлагает множество отличных возможностей найти друга для языкового обмена. Вы можете найти кого-то, кто в настоящее время доступен, или посетить оживленный новый языковой форум, где многие изучающие иностранные языки, такие как вы, ищут кого-нибудь, с кем можно попрактиковаться в разговоре.
Это может быть веб-сайт меньшего размера, но люди дружелюбны, и вы можете искать людей по языку, который они хотят изучать (или хотят преподавать). Вы даже можете искать людей по увлечениям и интересам. Если вы не знаете, с чего начать, вы можете просто присоединиться к основному чату, где вы можете узнать, кто сейчас в сети, и поздороваться!
Цена: Бесплатно.
Что это такое: Coeffee — это забавный веб-сайт, на котором преподаются языки с помощью игр.Вы можете играть против других в таких играх, как «Составь фразу», где вы выбираете правильные слова, чтобы составить предложение, или можете играть в игры по угадыванию слов. Получайте удовольствие, когда вы учитесь с другими людьми — вы можете заводить друзей в основных играх и стать частью сообщества.
Когда вы встретите некоторых изучающих язык на Coeffee, вы можете перенести свои разговоры в программу голосового или видеочата и попрактиковаться в разговоре там.
Цена: Бесплатно.
Что это: Еще кофе? Вот так! Думайте об этом веб-сайте, как о чашке кофе с кем-то в кафе.Это очень дружелюбно и индивидуально. У Coffee Strap всего около 2500 пользователей, но небольшой размер компенсируется умным методом подбора, который находит собеседников, с которыми вам будет приятно общаться.
После того, как вы нашли партнера, вы можете участвовать в управляемом разговоре, который длится всего семь минут. По истечении семи минут у вас будет другой партнер, с которым вы продолжите тренировку. Это означает, что здесь можно много попрактиковаться.
Помните — когда вы находитесь в Интернете, вы никогда не одиноки .Посетите любой из этих веб-сайтов, и вы найдете много других людей, похожих на вас, которые хотят учиться и отлично общаться.
Загрузить: Эта запись в блоге доступна в виде удобного портативного PDF-файла, который вы можете можно взять куда угодно. Щелкните здесь, чтобы получить копию. (Скачать)
И еще кое-что…
Если вы хотите узнать, как на самом деле говорят носители английского языка, то я должен рассказать вам о FluentU. FluentU позволяет выучить настоящий английский.Он учит вас популярными ток-шоу, запоминающимися музыкальными клипами и забавными рекламными роликами:
Если вы хотите его посмотреть, возможно, он у FluentU.
FluentU упрощает просмотр видео на английском языке. Он имеет интерактивные подписи. Нажмите на любое слово, чтобы увидеть изображение, определение и полезные примеры.
FluentU позволяет вам изучать интересный контент со всемирно известными знаменитостями.
Нажмите на слово «принес», и вы увидите следующее:
FluentU позволяет вам нажать, чтобы найти любое слово.
Видео превращаются в уроки английского. С помощью вопросов FluentU вы всегда сможете увидеть больше примеров для слова, которое вы изучаете.
FluentU поможет вам быстро учиться с помощью полезных вопросов и множества примеров. Учить больше.
Самое интересное? FluentU знает словарный запас, который вы изучаете. Он рекомендует вам примеры и видео, основанные на этих словах. У вас есть 100% персонализированный опыт.
Начните использовать FluentU на веб-сайте со своего компьютера или планшета или, что еще лучше, загрузите приложение FluentU из магазинов iTunes или Google Play.
Если вам понравился этот пост, что-то мне подсказывает, что вам понравится FluentU, лучший способ выучить английский с помощью реальных видео.
Испытайте погружение в английский онлайн!
.Как предотвратить заболевание ОРВИ у ребенка. Какие меры профилактики наиболее действенны. Что делать, если ребенок все-таки заболел ОРВИ. Какие средства помогут быстрее справиться с вирусной . . .
Какие виды бандажей для беременных бывают. Как правильно подобрать и носить бандаж во время беременности. Когда нужно начинать использовать бандаж. Какие есть показания и противопоказания . . .